Properties

Label 2925.1609
Modulus $2925$
Conductor $2925$
Order $30$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2925, base_ring=CyclotomicField(30))
 
M = H._module
 
chi = DirichletCharacter(H, M([20,21,25]))
 
pari: [g,chi] = znchar(Mod(1609,2925))
 

Basic properties

Modulus: \(2925\)
Conductor: \(2925\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(30\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2925.eu

\(\chi_{2925}(4,\cdot)\) \(\chi_{2925}(439,\cdot)\) \(\chi_{2925}(589,\cdot)\) \(\chi_{2925}(1609,\cdot)\) \(\chi_{2925}(1759,\cdot)\) \(\chi_{2925}(2194,\cdot)\) \(\chi_{2925}(2344,\cdot)\) \(\chi_{2925}(2779,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{15})\)
Fixed field: Number field defined by a degree 30 polynomial

Values on generators

\((326,352,2251)\) → \((e\left(\frac{2}{3}\right),e\left(\frac{7}{10}\right),e\left(\frac{5}{6}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(7\)\(8\)\(11\)\(14\)\(16\)\(17\)\(19\)\(22\)
\( \chi_{ 2925 }(1609, a) \) \(1\)\(1\)\(e\left(\frac{1}{5}\right)\)\(e\left(\frac{2}{5}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{3}{5}\right)\)\(e\left(\frac{7}{10}\right)\)\(e\left(\frac{8}{15}\right)\)\(e\left(\frac{4}{5}\right)\)\(e\left(\frac{23}{30}\right)\)\(e\left(\frac{23}{30}\right)\)\(e\left(\frac{9}{10}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 2925 }(1609,a) \;\) at \(\;a = \) e.g. 2