from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2925, base_ring=CyclotomicField(12))
M = H._module
chi = DirichletCharacter(H, M([2,6,7]))
pari: [g,chi] = znchar(Mod(1649,2925))
Basic properties
Modulus: | \(2925\) | |
Conductor: | \(585\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(12\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from \(\chi_{585}(479,\cdot)\) | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | no | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 2925.cv
\(\chi_{2925}(149,\cdot)\) \(\chi_{2925}(1649,\cdot)\) \(\chi_{2925}(1874,\cdot)\) \(\chi_{2925}(2399,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{12})\) |
Fixed field: | 12.12.10848744628503862876453125.1 |
Values on generators
\((326,352,2251)\) → \((e\left(\frac{1}{6}\right),-1,e\left(\frac{7}{12}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(2\) | \(4\) | \(7\) | \(8\) | \(11\) | \(14\) | \(16\) | \(17\) | \(19\) | \(22\) |
\( \chi_{ 2925 }(1649, a) \) | \(1\) | \(1\) | \(i\) | \(-1\) | \(e\left(\frac{7}{12}\right)\) | \(-i\) | \(i\) | \(e\left(\frac{5}{6}\right)\) | \(1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(-1\) |
sage: chi.jacobi_sum(n)