Properties

Label 2925.298
Modulus $2925$
Conductor $325$
Order $20$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2925, base_ring=CyclotomicField(20))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,11,10]))
 
pari: [g,chi] = znchar(Mod(298,2925))
 

Basic properties

Modulus: \(2925\)
Conductor: \(325\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(20\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{325}(298,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2925.er

\(\chi_{2925}(298,\cdot)\) \(\chi_{2925}(883,\cdot)\) \(\chi_{2925}(1117,\cdot)\) \(\chi_{2925}(1702,\cdot)\) \(\chi_{2925}(2053,\cdot)\) \(\chi_{2925}(2287,\cdot)\) \(\chi_{2925}(2638,\cdot)\) \(\chi_{2925}(2872,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{20})\)
Fixed field: 20.0.401221017379430122673511505126953125.1

Values on generators

\((326,352,2251)\) → \((1,e\left(\frac{11}{20}\right),-1)\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(7\)\(8\)\(11\)\(14\)\(16\)\(17\)\(19\)\(22\)
\( \chi_{ 2925 }(298, a) \) \(-1\)\(1\)\(e\left(\frac{1}{20}\right)\)\(e\left(\frac{1}{10}\right)\)\(i\)\(e\left(\frac{3}{20}\right)\)\(e\left(\frac{3}{10}\right)\)\(e\left(\frac{3}{10}\right)\)\(e\left(\frac{1}{5}\right)\)\(e\left(\frac{3}{20}\right)\)\(e\left(\frac{2}{5}\right)\)\(e\left(\frac{7}{20}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 2925 }(298,a) \;\) at \(\;a = \) e.g. 2