from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2925, base_ring=CyclotomicField(60))
M = H._module
chi = DirichletCharacter(H, M([10,57,30]))
pari: [g,chi] = znchar(Mod(38,2925))
Basic properties
Modulus: | \(2925\) | |
Conductor: | \(2925\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(60\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | yes | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 2925.gz
\(\chi_{2925}(38,\cdot)\) \(\chi_{2925}(77,\cdot)\) \(\chi_{2925}(272,\cdot)\) \(\chi_{2925}(428,\cdot)\) \(\chi_{2925}(623,\cdot)\) \(\chi_{2925}(662,\cdot)\) \(\chi_{2925}(1013,\cdot)\) \(\chi_{2925}(1208,\cdot)\) \(\chi_{2925}(1247,\cdot)\) \(\chi_{2925}(1442,\cdot)\) \(\chi_{2925}(1598,\cdot)\) \(\chi_{2925}(2027,\cdot)\) \(\chi_{2925}(2183,\cdot)\) \(\chi_{2925}(2378,\cdot)\) \(\chi_{2925}(2417,\cdot)\) \(\chi_{2925}(2612,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{60})\) |
Fixed field: | Number field defined by a degree 60 polynomial |
Values on generators
\((326,352,2251)\) → \((e\left(\frac{1}{6}\right),e\left(\frac{19}{20}\right),-1)\)
First values
\(a\) | \(-1\) | \(1\) | \(2\) | \(4\) | \(7\) | \(8\) | \(11\) | \(14\) | \(16\) | \(17\) | \(19\) | \(22\) |
\( \chi_{ 2925 }(38, a) \) | \(1\) | \(1\) | \(e\left(\frac{37}{60}\right)\) | \(e\left(\frac{7}{30}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{17}{20}\right)\) | \(e\left(\frac{13}{15}\right)\) | \(e\left(\frac{8}{15}\right)\) | \(e\left(\frac{7}{15}\right)\) | \(e\left(\frac{17}{20}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{29}{60}\right)\) |
sage: chi.jacobi_sum(n)