Properties

Label 2925.38
Modulus $2925$
Conductor $2925$
Order $60$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2925, base_ring=CyclotomicField(60))
 
M = H._module
 
chi = DirichletCharacter(H, M([10,57,30]))
 
pari: [g,chi] = znchar(Mod(38,2925))
 

Basic properties

Modulus: \(2925\)
Conductor: \(2925\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(60\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2925.gz

\(\chi_{2925}(38,\cdot)\) \(\chi_{2925}(77,\cdot)\) \(\chi_{2925}(272,\cdot)\) \(\chi_{2925}(428,\cdot)\) \(\chi_{2925}(623,\cdot)\) \(\chi_{2925}(662,\cdot)\) \(\chi_{2925}(1013,\cdot)\) \(\chi_{2925}(1208,\cdot)\) \(\chi_{2925}(1247,\cdot)\) \(\chi_{2925}(1442,\cdot)\) \(\chi_{2925}(1598,\cdot)\) \(\chi_{2925}(2027,\cdot)\) \(\chi_{2925}(2183,\cdot)\) \(\chi_{2925}(2378,\cdot)\) \(\chi_{2925}(2417,\cdot)\) \(\chi_{2925}(2612,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{60})\)
Fixed field: Number field defined by a degree 60 polynomial

Values on generators

\((326,352,2251)\) → \((e\left(\frac{1}{6}\right),e\left(\frac{19}{20}\right),-1)\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(7\)\(8\)\(11\)\(14\)\(16\)\(17\)\(19\)\(22\)
\( \chi_{ 2925 }(38, a) \) \(1\)\(1\)\(e\left(\frac{37}{60}\right)\)\(e\left(\frac{7}{30}\right)\)\(e\left(\frac{11}{12}\right)\)\(e\left(\frac{17}{20}\right)\)\(e\left(\frac{13}{15}\right)\)\(e\left(\frac{8}{15}\right)\)\(e\left(\frac{7}{15}\right)\)\(e\left(\frac{17}{20}\right)\)\(e\left(\frac{3}{5}\right)\)\(e\left(\frac{29}{60}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 2925 }(38,a) \;\) at \(\;a = \) e.g. 2