Properties

Label 2925.43
Modulus 29252925
Conductor 585585
Order 1212
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2925, base_ring=CyclotomicField(12)) M = H._module chi = DirichletCharacter(H, M([8,9,2]))
 
Copy content pari:[g,chi] = znchar(Mod(43,2925))
 

Basic properties

Modulus: 29252925
Conductor: 585585
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: 1212
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from χ585(43,)\chi_{585}(43,\cdot)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 2925.dt

χ2925(43,)\chi_{2925}(43,\cdot) χ2925(868,)\chi_{2925}(868,\cdot) χ2925(2032,)\chi_{2925}(2032,\cdot) χ2925(2857,)\chi_{2925}(2857,\cdot)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ12)\Q(\zeta_{12})
Fixed field: 12.0.11590539133016947517578125.2

Values on generators

(326,352,2251)(326,352,2251)(e(23),i,e(16))(e\left(\frac{2}{3}\right),-i,e\left(\frac{1}{6}\right))

First values

aa 1-11122447788111114141616171719192222
χ2925(43,a) \chi_{ 2925 }(43, a) 1-111e(712)e\left(\frac{7}{12}\right)e(16)e\left(\frac{1}{6}\right)iii-ie(56)e\left(\frac{5}{6}\right)e(56)e\left(\frac{5}{6}\right)e(13)e\left(\frac{1}{3}\right)e(112)e\left(\frac{1}{12}\right)e(13)e\left(\frac{1}{3}\right)e(512)e\left(\frac{5}{12}\right)
Copy content sage:chi.jacobi_sum(n)
 
χ2925(43,a)   \chi_{ 2925 }(43,a) \; at   a=\;a = e.g. 2