Properties

Label 2925.43
Modulus $2925$
Conductor $585$
Order $12$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2925, base_ring=CyclotomicField(12))
 
M = H._module
 
chi = DirichletCharacter(H, M([8,9,2]))
 
pari: [g,chi] = znchar(Mod(43,2925))
 

Basic properties

Modulus: \(2925\)
Conductor: \(585\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(12\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{585}(43,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2925.dt

\(\chi_{2925}(43,\cdot)\) \(\chi_{2925}(868,\cdot)\) \(\chi_{2925}(2032,\cdot)\) \(\chi_{2925}(2857,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{12})\)
Fixed field: 12.0.11590539133016947517578125.2

Values on generators

\((326,352,2251)\) → \((e\left(\frac{2}{3}\right),-i,e\left(\frac{1}{6}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(7\)\(8\)\(11\)\(14\)\(16\)\(17\)\(19\)\(22\)
\( \chi_{ 2925 }(43, a) \) \(-1\)\(1\)\(e\left(\frac{7}{12}\right)\)\(e\left(\frac{1}{6}\right)\)\(i\)\(-i\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{1}{12}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{5}{12}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 2925 }(43,a) \;\) at \(\;a = \) e.g. 2