sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(296, base_ring=CyclotomicField(36))
M = H._module
chi = DirichletCharacter(H, M([18,18,19]))
pari:[g,chi] = znchar(Mod(35,296))
Modulus: | 296 | |
Conductor: | 296 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 36 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ296(19,⋅)
χ296(35,⋅)
χ296(59,⋅)
χ296(91,⋅)
χ296(131,⋅)
χ296(163,⋅)
χ296(187,⋅)
χ296(203,⋅)
χ296(227,⋅)
χ296(235,⋅)
χ296(283,⋅)
χ296(291,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(223,149,113) → (−1,−1,e(3619))
a |
−1 | 1 | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | 19 | 21 |
χ296(35,a) |
1 | 1 | e(1813) | e(3623) | e(187) | e(94) | e(65) | e(3611) | e(3613) | e(3625) | e(3617) | e(91) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)