Properties

Label 296.5
Modulus $296$
Conductor $296$
Order $36$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(296, base_ring=CyclotomicField(36))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,18,23]))
 
pari: [g,chi] = znchar(Mod(5,296))
 

Basic properties

Modulus: \(296\)
Conductor: \(296\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(36\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 296.bg

\(\chi_{296}(5,\cdot)\) \(\chi_{296}(13,\cdot)\) \(\chi_{296}(61,\cdot)\) \(\chi_{296}(69,\cdot)\) \(\chi_{296}(93,\cdot)\) \(\chi_{296}(109,\cdot)\) \(\chi_{296}(133,\cdot)\) \(\chi_{296}(165,\cdot)\) \(\chi_{296}(205,\cdot)\) \(\chi_{296}(237,\cdot)\) \(\chi_{296}(261,\cdot)\) \(\chi_{296}(277,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{36})\)
Fixed field: 36.0.138892919952333446776057851184385905517238171566853781889085447929331712.1

Values on generators

\((223,149,113)\) → \((1,-1,e\left(\frac{23}{36}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(13\)\(15\)\(17\)\(19\)\(21\)
\( \chi_{ 296 }(5, a) \) \(-1\)\(1\)\(e\left(\frac{1}{9}\right)\)\(e\left(\frac{7}{36}\right)\)\(e\left(\frac{4}{9}\right)\)\(e\left(\frac{2}{9}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{19}{36}\right)\)\(e\left(\frac{11}{36}\right)\)\(e\left(\frac{17}{36}\right)\)\(e\left(\frac{31}{36}\right)\)\(e\left(\frac{5}{9}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 296 }(5,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 296 }(5,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 296 }(5,·),\chi_{ 296 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 296 }(5,·)) \;\) at \(\; a,b = \) e.g. 1,2