sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(297, base_ring=CyclotomicField(90))
M = H._module
chi = DirichletCharacter(H, M([80,63]))
pari:[g,chi] = znchar(Mod(7,297))
Modulus: | 297 | |
Conductor: | 297 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 90 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ297(7,⋅)
χ297(13,⋅)
χ297(40,⋅)
χ297(52,⋅)
χ297(61,⋅)
χ297(79,⋅)
χ297(85,⋅)
χ297(94,⋅)
χ297(106,⋅)
χ297(112,⋅)
χ297(139,⋅)
χ297(151,⋅)
χ297(160,⋅)
χ297(178,⋅)
χ297(184,⋅)
χ297(193,⋅)
χ297(205,⋅)
χ297(211,⋅)
χ297(238,⋅)
χ297(250,⋅)
χ297(259,⋅)
χ297(277,⋅)
χ297(283,⋅)
χ297(292,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(56,244) → (e(98),e(107))
a |
−1 | 1 | 2 | 4 | 5 | 7 | 8 | 10 | 13 | 14 | 16 | 17 |
χ297(7,a) |
−1 | 1 | e(9053) | e(458) | e(4511) | e(9011) | e(3023) | e(65) | e(9073) | e(4532) | e(4516) | e(3019) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)