Properties

Label 300.37
Modulus $300$
Conductor $25$
Order $20$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(300, base_ring=CyclotomicField(20))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,0,9]))
 
pari: [g,chi] = znchar(Mod(37,300))
 

Basic properties

Modulus: \(300\)
Conductor: \(25\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(20\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{25}(12,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 300.v

\(\chi_{300}(13,\cdot)\) \(\chi_{300}(37,\cdot)\) \(\chi_{300}(73,\cdot)\) \(\chi_{300}(97,\cdot)\) \(\chi_{300}(133,\cdot)\) \(\chi_{300}(217,\cdot)\) \(\chi_{300}(253,\cdot)\) \(\chi_{300}(277,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{20})\)
Fixed field: Number field defined by a degree 20 polynomial

Values on generators

\((151,101,277)\) → \((1,1,e\left(\frac{9}{20}\right))\)

First values

\(a\) \(-1\)\(1\)\(7\)\(11\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)
\( \chi_{ 300 }(37, a) \) \(-1\)\(1\)\(i\)\(e\left(\frac{1}{5}\right)\)\(e\left(\frac{11}{20}\right)\)\(e\left(\frac{17}{20}\right)\)\(e\left(\frac{1}{10}\right)\)\(e\left(\frac{19}{20}\right)\)\(e\left(\frac{9}{10}\right)\)\(e\left(\frac{3}{5}\right)\)\(e\left(\frac{1}{20}\right)\)\(e\left(\frac{4}{5}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 300 }(37,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 300 }(37,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 300 }(37,·),\chi_{ 300 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 300 }(37,·)) \;\) at \(\; a,b = \) e.g. 1,2