sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(300, base_ring=CyclotomicField(20))
M = H._module
chi = DirichletCharacter(H, M([0,0,9]))
pari:[g,chi] = znchar(Mod(37,300))
χ300(13,⋅)
χ300(37,⋅)
χ300(73,⋅)
χ300(97,⋅)
χ300(133,⋅)
χ300(217,⋅)
χ300(253,⋅)
χ300(277,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(151,101,277) → (1,1,e(209))
a |
−1 | 1 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 |
χ300(37,a) |
−1 | 1 | i | e(51) | e(2011) | e(2017) | e(101) | e(2019) | e(109) | e(53) | e(201) | e(54) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)