from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(300, base_ring=CyclotomicField(20))
M = H._module
chi = DirichletCharacter(H, M([0,0,9]))
pari: [g,chi] = znchar(Mod(37,300))
Basic properties
Modulus: | \(300\) | |
Conductor: | \(25\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(20\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from \(\chi_{25}(12,\cdot)\) | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | odd | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 300.v
\(\chi_{300}(13,\cdot)\) \(\chi_{300}(37,\cdot)\) \(\chi_{300}(73,\cdot)\) \(\chi_{300}(97,\cdot)\) \(\chi_{300}(133,\cdot)\) \(\chi_{300}(217,\cdot)\) \(\chi_{300}(253,\cdot)\) \(\chi_{300}(277,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{20})\) |
Fixed field: | Number field defined by a degree 20 polynomial |
Values on generators
\((151,101,277)\) → \((1,1,e\left(\frac{9}{20}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) |
\( \chi_{ 300 }(37, a) \) | \(-1\) | \(1\) | \(i\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{11}{20}\right)\) | \(e\left(\frac{17}{20}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{19}{20}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{1}{20}\right)\) | \(e\left(\frac{4}{5}\right)\) |
sage: chi.jacobi_sum(n)
Gauss sum
sage: chi.gauss_sum(a)
pari: znchargauss(g,chi,a)
Jacobi sum
sage: chi.jacobi_sum(n)
Kloosterman sum
sage: chi.kloosterman_sum(a,b)