Properties

Label 301.64
Modulus 301301
Conductor 4343
Order 77
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(301, base_ring=CyclotomicField(14))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,12]))
 
pari: [g,chi] = znchar(Mod(64,301))
 

Basic properties

Modulus: 301301
Conductor: 4343
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 77
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ43(21,)\chi_{43}(21,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 301.u

χ301(64,)\chi_{301}(64,\cdot) χ301(78,)\chi_{301}(78,\cdot) χ301(127,)\chi_{301}(127,\cdot) χ301(176,)\chi_{301}(176,\cdot) χ301(183,)\chi_{301}(183,\cdot) χ301(274,)\chi_{301}(274,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ7)\Q(\zeta_{7})
Fixed field: 7.7.6321363049.1

Values on generators

(87,218)(87,218)(1,e(67))(1,e\left(\frac{6}{7}\right))

First values

aa 1-11122334455668899101011111212
χ301(64,a) \chi_{ 301 }(64, a) 1111e(17)e\left(\frac{1}{7}\right)e(67)e\left(\frac{6}{7}\right)e(27)e\left(\frac{2}{7}\right)e(37)e\left(\frac{3}{7}\right)11e(37)e\left(\frac{3}{7}\right)e(57)e\left(\frac{5}{7}\right)e(47)e\left(\frac{4}{7}\right)e(57)e\left(\frac{5}{7}\right)e(17)e\left(\frac{1}{7}\right)
sage: chi.jacobi_sum(n)
 
χ301(64,a)   \chi_{ 301 }(64,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ301(64,))   \tau_{ a }( \chi_{ 301 }(64,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ301(64,),χ301(n,))   J(\chi_{ 301 }(64,·),\chi_{ 301 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ301(64,))  K(a,b,\chi_{ 301 }(64,·)) \; at   a,b=\; a,b = e.g. 1,2