from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3024, base_ring=CyclotomicField(36))
M = H._module
chi = DirichletCharacter(H, M([0,27,20,12]))
pari: [g,chi] = znchar(Mod(1213,3024))
Basic properties
Modulus: | \(3024\) | |
Conductor: | \(3024\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(36\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | yes | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 3024.gq
\(\chi_{3024}(205,\cdot)\) \(\chi_{3024}(445,\cdot)\) \(\chi_{3024}(709,\cdot)\) \(\chi_{3024}(949,\cdot)\) \(\chi_{3024}(1213,\cdot)\) \(\chi_{3024}(1453,\cdot)\) \(\chi_{3024}(1717,\cdot)\) \(\chi_{3024}(1957,\cdot)\) \(\chi_{3024}(2221,\cdot)\) \(\chi_{3024}(2461,\cdot)\) \(\chi_{3024}(2725,\cdot)\) \(\chi_{3024}(2965,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{36})\) |
Fixed field: | Number field defined by a degree 36 polynomial |
Values on generators
\((1135,757,785,2593)\) → \((1,-i,e\left(\frac{5}{9}\right),e\left(\frac{1}{3}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(5\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(37\) |
\( \chi_{ 3024 }(1213, a) \) | \(1\) | \(1\) | \(e\left(\frac{7}{36}\right)\) | \(e\left(\frac{11}{36}\right)\) | \(e\left(\frac{25}{36}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{29}{36}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(-i\) |
sage: chi.jacobi_sum(n)