from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3024, base_ring=CyclotomicField(36))
M = H._module
chi = DirichletCharacter(H, M([18,9,22,24]))
pari: [g,chi] = znchar(Mod(347,3024))
Basic properties
Modulus: | \(3024\) | |
Conductor: | \(3024\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(36\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | yes | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 3024.hc
\(\chi_{3024}(347,\cdot)\) \(\chi_{3024}(443,\cdot)\) \(\chi_{3024}(851,\cdot)\) \(\chi_{3024}(947,\cdot)\) \(\chi_{3024}(1355,\cdot)\) \(\chi_{3024}(1451,\cdot)\) \(\chi_{3024}(1859,\cdot)\) \(\chi_{3024}(1955,\cdot)\) \(\chi_{3024}(2363,\cdot)\) \(\chi_{3024}(2459,\cdot)\) \(\chi_{3024}(2867,\cdot)\) \(\chi_{3024}(2963,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{36})\) |
Fixed field: | Number field defined by a degree 36 polynomial |
Values on generators
\((1135,757,785,2593)\) → \((-1,i,e\left(\frac{11}{18}\right),e\left(\frac{2}{3}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(5\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(37\) |
\( \chi_{ 3024 }(347, a) \) | \(1\) | \(1\) | \(e\left(\frac{23}{36}\right)\) | \(e\left(\frac{13}{36}\right)\) | \(e\left(\frac{23}{36}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{13}{36}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(i\) |
sage: chi.jacobi_sum(n)