from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(304, base_ring=CyclotomicField(36))
M = H._module
chi = DirichletCharacter(H, M([0,27,16]))
pari: [g,chi] = znchar(Mod(237,304))
Basic properties
Modulus: | \(304\) | |
Conductor: | \(304\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(36\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | yes | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 304.bi
\(\chi_{304}(5,\cdot)\) \(\chi_{304}(61,\cdot)\) \(\chi_{304}(85,\cdot)\) \(\chi_{304}(93,\cdot)\) \(\chi_{304}(101,\cdot)\) \(\chi_{304}(149,\cdot)\) \(\chi_{304}(157,\cdot)\) \(\chi_{304}(213,\cdot)\) \(\chi_{304}(237,\cdot)\) \(\chi_{304}(245,\cdot)\) \(\chi_{304}(253,\cdot)\) \(\chi_{304}(301,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{36})\) |
Fixed field: | 36.36.52733281945045886724167383478270850720626086921526306402773390818541568.1 |
Values on generators
\((191,229,97)\) → \((1,-i,e\left(\frac{4}{9}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(21\) | \(23\) |
\( \chi_{ 304 }(237, a) \) | \(1\) | \(1\) | \(e\left(\frac{1}{36}\right)\) | \(e\left(\frac{31}{36}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{17}{36}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{7}{36}\right)\) | \(e\left(\frac{7}{18}\right)\) |
sage: chi.jacobi_sum(n)
Gauss sum
sage: chi.gauss_sum(a)
pari: znchargauss(g,chi,a)
Jacobi sum
sage: chi.jacobi_sum(n)
Kloosterman sum
sage: chi.kloosterman_sum(a,b)