from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3040, base_ring=CyclotomicField(72))
M = H._module
chi = DirichletCharacter(H, M([36,27,18,40]))
pari: [g,chi] = znchar(Mod(1347,3040))
χ3040(43,⋅)
χ3040(123,⋅)
χ3040(283,⋅)
χ3040(443,⋅)
χ3040(707,⋅)
χ3040(947,⋅)
χ3040(1107,⋅)
χ3040(1163,⋅)
χ3040(1187,⋅)
χ3040(1347,⋅)
χ3040(1403,⋅)
χ3040(1507,⋅)
χ3040(1563,⋅)
χ3040(1643,⋅)
χ3040(1803,⋅)
χ3040(1963,⋅)
χ3040(2227,⋅)
χ3040(2467,⋅)
χ3040(2627,⋅)
χ3040(2683,⋅)
χ3040(2707,⋅)
χ3040(2867,⋅)
χ3040(2923,⋅)
χ3040(3027,⋅)
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(191,2661,1217,1921) → (−1,e(83),i,e(95))
a |
−1 | 1 | 3 | 7 | 9 | 11 | 13 | 17 | 21 | 23 | 27 | 29 |
χ3040(1347,a) |
1 | 1 | e(7243) | e(65) | e(367) | e(241) | e(7211) | e(3611) | e(7231) | e(1811) | e(2419) | e(725) |