Properties

Label 3040.1557
Modulus 30403040
Conductor 30403040
Order 88
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3040, base_ring=CyclotomicField(8))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,5,2,4]))
 
pari: [g,chi] = znchar(Mod(1557,3040))
 

Basic properties

Modulus: 30403040
Conductor: 30403040
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 88
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 3040.ce

χ3040(37,)\chi_{3040}(37,\cdot) χ3040(493,)\chi_{3040}(493,\cdot) χ3040(1557,)\chi_{3040}(1557,\cdot) χ3040(2013,)\chi_{3040}(2013,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ8)\Q(\zeta_{8})
Fixed field: 8.8.4372847132672000000.1

Values on generators

(191,2661,1217,1921)(191,2661,1217,1921)(1,e(58),i,1)(1,e\left(\frac{5}{8}\right),i,-1)

First values

aa 1-1113377991111131317172121232327272929
χ3040(1557,a) \chi_{ 3040 }(1557, a) 1111e(18)e\left(\frac{1}{8}\right)1-1iie(18)e\left(\frac{1}{8}\right)e(58)e\left(\frac{5}{8}\right)i-ie(58)e\left(\frac{5}{8}\right)1-1e(38)e\left(\frac{3}{8}\right)e(78)e\left(\frac{7}{8}\right)
sage: chi.jacobi_sum(n)
 
χ3040(1557,a)   \chi_{ 3040 }(1557,a) \; at   a=\;a = e.g. 2