Properties

Label 306.r
Modulus $306$
Conductor $153$
Order $24$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(306, base_ring=CyclotomicField(24))
 
M = H._module
 
chi = DirichletCharacter(H, M([16,15]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(25,306))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(306\)
Conductor: \(153\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(24\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from 153.r
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{24})\)
Fixed field: 24.24.128028748427622359924863503266793533356497.1

Characters in Galois orbit

Character \(-1\) \(1\) \(5\) \(7\) \(11\) \(13\) \(19\) \(23\) \(25\) \(29\) \(31\) \(35\)
\(\chi_{306}(25,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{24}\right)\) \(e\left(\frac{13}{24}\right)\) \(e\left(\frac{1}{24}\right)\) \(e\left(\frac{5}{6}\right)\) \(-i\) \(e\left(\frac{17}{24}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{19}{24}\right)\) \(e\left(\frac{23}{24}\right)\) \(1\)
\(\chi_{306}(43,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{24}\right)\) \(e\left(\frac{1}{24}\right)\) \(e\left(\frac{13}{24}\right)\) \(e\left(\frac{5}{6}\right)\) \(-i\) \(e\left(\frac{5}{24}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{7}{24}\right)\) \(e\left(\frac{11}{24}\right)\) \(1\)
\(\chi_{306}(49,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{24}\right)\) \(e\left(\frac{11}{24}\right)\) \(e\left(\frac{23}{24}\right)\) \(e\left(\frac{1}{6}\right)\) \(i\) \(e\left(\frac{7}{24}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{5}{24}\right)\) \(e\left(\frac{1}{24}\right)\) \(1\)
\(\chi_{306}(121,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{24}\right)\) \(e\left(\frac{23}{24}\right)\) \(e\left(\frac{11}{24}\right)\) \(e\left(\frac{1}{6}\right)\) \(i\) \(e\left(\frac{19}{24}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{17}{24}\right)\) \(e\left(\frac{13}{24}\right)\) \(1\)
\(\chi_{306}(151,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{24}\right)\) \(e\left(\frac{19}{24}\right)\) \(e\left(\frac{7}{24}\right)\) \(e\left(\frac{5}{6}\right)\) \(i\) \(e\left(\frac{23}{24}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{13}{24}\right)\) \(e\left(\frac{17}{24}\right)\) \(1\)
\(\chi_{306}(223,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{24}\right)\) \(e\left(\frac{7}{24}\right)\) \(e\left(\frac{19}{24}\right)\) \(e\left(\frac{5}{6}\right)\) \(i\) \(e\left(\frac{11}{24}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{1}{24}\right)\) \(e\left(\frac{5}{24}\right)\) \(1\)
\(\chi_{306}(229,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{24}\right)\) \(e\left(\frac{5}{24}\right)\) \(e\left(\frac{17}{24}\right)\) \(e\left(\frac{1}{6}\right)\) \(-i\) \(e\left(\frac{1}{24}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{11}{24}\right)\) \(e\left(\frac{7}{24}\right)\) \(1\)
\(\chi_{306}(247,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{24}\right)\) \(e\left(\frac{17}{24}\right)\) \(e\left(\frac{5}{24}\right)\) \(e\left(\frac{1}{6}\right)\) \(-i\) \(e\left(\frac{13}{24}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{23}{24}\right)\) \(e\left(\frac{19}{24}\right)\) \(1\)