Basic properties
Modulus: | \(3072\) | |
Conductor: | \(1024\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(256\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from \(\chi_{1024}(181,\cdot)\) | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 3072.bh
\(\chi_{3072}(13,\cdot)\) \(\chi_{3072}(37,\cdot)\) \(\chi_{3072}(61,\cdot)\) \(\chi_{3072}(85,\cdot)\) \(\chi_{3072}(109,\cdot)\) \(\chi_{3072}(133,\cdot)\) \(\chi_{3072}(157,\cdot)\) \(\chi_{3072}(181,\cdot)\) \(\chi_{3072}(205,\cdot)\) \(\chi_{3072}(229,\cdot)\) \(\chi_{3072}(253,\cdot)\) \(\chi_{3072}(277,\cdot)\) \(\chi_{3072}(301,\cdot)\) \(\chi_{3072}(325,\cdot)\) \(\chi_{3072}(349,\cdot)\) \(\chi_{3072}(373,\cdot)\) \(\chi_{3072}(397,\cdot)\) \(\chi_{3072}(421,\cdot)\) \(\chi_{3072}(445,\cdot)\) \(\chi_{3072}(469,\cdot)\) \(\chi_{3072}(493,\cdot)\) \(\chi_{3072}(517,\cdot)\) \(\chi_{3072}(541,\cdot)\) \(\chi_{3072}(565,\cdot)\) \(\chi_{3072}(589,\cdot)\) \(\chi_{3072}(613,\cdot)\) \(\chi_{3072}(637,\cdot)\) \(\chi_{3072}(661,\cdot)\) \(\chi_{3072}(685,\cdot)\) \(\chi_{3072}(709,\cdot)\) ...
Related number fields
Field of values: | $\Q(\zeta_{256})$ |
Fixed field: | Number field defined by a degree 256 polynomial (not computed) |
Values on generators
\((2047,2053,1025)\) → \((1,e\left(\frac{101}{256}\right),1)\)
First values
\(a\) | \(-1\) | \(1\) | \(5\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) |
\( \chi_{ 3072 }(181, a) \) | \(1\) | \(1\) | \(e\left(\frac{101}{256}\right)\) | \(e\left(\frac{89}{128}\right)\) | \(e\left(\frac{9}{256}\right)\) | \(e\left(\frac{75}{256}\right)\) | \(e\left(\frac{35}{64}\right)\) | \(e\left(\frac{147}{256}\right)\) | \(e\left(\frac{3}{128}\right)\) | \(e\left(\frac{101}{128}\right)\) | \(e\left(\frac{135}{256}\right)\) | \(e\left(\frac{21}{32}\right)\) |