Properties

Label 308.289
Modulus $308$
Conductor $77$
Order $15$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(308, base_ring=CyclotomicField(30))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,10,24]))
 
pari: [g,chi] = znchar(Mod(289,308))
 

Basic properties

Modulus: \(308\)
Conductor: \(77\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(15\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{77}(58,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 308.y

\(\chi_{308}(9,\cdot)\) \(\chi_{308}(25,\cdot)\) \(\chi_{308}(37,\cdot)\) \(\chi_{308}(53,\cdot)\) \(\chi_{308}(81,\cdot)\) \(\chi_{308}(93,\cdot)\) \(\chi_{308}(137,\cdot)\) \(\chi_{308}(289,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{15})\)
Fixed field: 15.15.886528337182930278529.1

Values on generators

\((155,45,57)\) → \((1,e\left(\frac{1}{3}\right),e\left(\frac{4}{5}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(9\)\(13\)\(15\)\(17\)\(19\)\(23\)\(25\)\(27\)
\( \chi_{ 308 }(289, a) \) \(1\)\(1\)\(e\left(\frac{11}{15}\right)\)\(e\left(\frac{13}{15}\right)\)\(e\left(\frac{7}{15}\right)\)\(e\left(\frac{4}{5}\right)\)\(e\left(\frac{3}{5}\right)\)\(e\left(\frac{8}{15}\right)\)\(e\left(\frac{1}{15}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{11}{15}\right)\)\(e\left(\frac{1}{5}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 308 }(289,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 308 }(289,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 308 }(289,·),\chi_{ 308 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 308 }(289,·)) \;\) at \(\; a,b = \) e.g. 1,2