Properties

Label 3104.1971
Modulus $3104$
Conductor $3104$
Order $48$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3104, base_ring=CyclotomicField(48))
 
M = H._module
 
chi = DirichletCharacter(H, M([24,42,23]))
 
pari: [g,chi] = znchar(Mod(1971,3104))
 

Basic properties

Modulus: \(3104\)
Conductor: \(3104\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(48\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 3104.er

\(\chi_{3104}(3,\cdot)\) \(\chi_{3104}(219,\cdot)\) \(\chi_{3104}(243,\cdot)\) \(\chi_{3104}(339,\cdot)\) \(\chi_{3104}(579,\cdot)\) \(\chi_{3104}(1035,\cdot)\) \(\chi_{3104}(1099,\cdot)\) \(\chi_{3104}(1347,\cdot)\) \(\chi_{3104}(1715,\cdot)\) \(\chi_{3104}(1915,\cdot)\) \(\chi_{3104}(1971,\cdot)\) \(\chi_{3104}(2187,\cdot)\) \(\chi_{3104}(2339,\cdot)\) \(\chi_{3104}(2427,\cdot)\) \(\chi_{3104}(2811,\cdot)\) \(\chi_{3104}(3051,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{48})\)
Fixed field: Number field defined by a degree 48 polynomial

Values on generators

\((2911,389,2721)\) → \((-1,e\left(\frac{7}{8}\right),e\left(\frac{23}{48}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(13\)\(15\)\(17\)\(19\)\(21\)
\( \chi_{ 3104 }(1971, a) \) \(-1\)\(1\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{17}{48}\right)\)\(e\left(\frac{5}{48}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{1}{12}\right)\)\(e\left(\frac{5}{48}\right)\)\(e\left(\frac{1}{48}\right)\)\(e\left(\frac{7}{48}\right)\)\(e\left(\frac{7}{16}\right)\)\(e\left(\frac{37}{48}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 3104 }(1971,a) \;\) at \(\;a = \) e.g. 2