from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3104, base_ring=CyclotomicField(48))
M = H._module
chi = DirichletCharacter(H, M([24,12,25]))
pari: [g,chi] = znchar(Mod(3079,3104))
Basic properties
Modulus: | \(3104\) | |
Conductor: | \(1552\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(48\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from \(\chi_{1552}(363,\cdot)\) | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | no | |
Parity: | odd | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 3104.ex
\(\chi_{3104}(183,\cdot)\) \(\chi_{3104}(487,\cdot)\) \(\chi_{3104}(631,\cdot)\) \(\chi_{3104}(647,\cdot)\) \(\chi_{3104}(711,\cdot)\) \(\chi_{3104}(727,\cdot)\) \(\chi_{3104}(871,\cdot)\) \(\chi_{3104}(1175,\cdot)\) \(\chi_{3104}(1383,\cdot)\) \(\chi_{3104}(1799,\cdot)\) \(\chi_{3104}(1943,\cdot)\) \(\chi_{3104}(2103,\cdot)\) \(\chi_{3104}(2359,\cdot)\) \(\chi_{3104}(2519,\cdot)\) \(\chi_{3104}(2663,\cdot)\) \(\chi_{3104}(3079,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{48})\) |
Fixed field: | Number field defined by a degree 48 polynomial |
Values on generators
\((2911,389,2721)\) → \((-1,i,e\left(\frac{25}{48}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(19\) | \(21\) |
\( \chi_{ 3104 }(3079, a) \) | \(-1\) | \(1\) | \(e\left(\frac{17}{24}\right)\) | \(e\left(\frac{37}{48}\right)\) | \(e\left(\frac{7}{48}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{13}{24}\right)\) | \(e\left(\frac{37}{48}\right)\) | \(e\left(\frac{23}{48}\right)\) | \(e\left(\frac{17}{48}\right)\) | \(e\left(\frac{7}{16}\right)\) | \(e\left(\frac{41}{48}\right)\) |
sage: chi.jacobi_sum(n)