Properties

Label 3104.cn
Modulus $3104$
Conductor $3104$
Order $16$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3104, base_ring=CyclotomicField(16))
 
M = H._module
 
chi = DirichletCharacter(H, M([8,10,11]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(555,3104))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(3104\)
Conductor: \(3104\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(16\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{16})\)
Fixed field: 16.0.2920355655094648999457260047702623544201101443072.2

Characters in Galois orbit

Character \(-1\) \(1\) \(3\) \(5\) \(7\) \(9\) \(11\) \(13\) \(15\) \(17\) \(19\) \(21\)
\(\chi_{3104}(555,\cdot)\) \(-1\) \(1\) \(-1\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{1}{16}\right)\) \(1\) \(-i\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{9}{16}\right)\)
\(\chi_{3104}(667,\cdot)\) \(-1\) \(1\) \(-1\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{13}{16}\right)\) \(1\) \(-i\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{5}{16}\right)\)
\(\chi_{3104}(1075,\cdot)\) \(-1\) \(1\) \(-1\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{3}{16}\right)\) \(1\) \(i\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{11}{16}\right)\)
\(\chi_{3104}(1467,\cdot)\) \(-1\) \(1\) \(-1\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{5}{16}\right)\) \(1\) \(-i\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{13}{16}\right)\)
\(\chi_{3104}(1579,\cdot)\) \(-1\) \(1\) \(-1\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{9}{16}\right)\) \(1\) \(-i\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{1}{16}\right)\)
\(\chi_{3104}(1667,\cdot)\) \(-1\) \(1\) \(-1\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{7}{16}\right)\) \(1\) \(i\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{15}{16}\right)\)
\(\chi_{3104}(2019,\cdot)\) \(-1\) \(1\) \(-1\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{15}{16}\right)\) \(1\) \(i\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{7}{16}\right)\)
\(\chi_{3104}(2611,\cdot)\) \(-1\) \(1\) \(-1\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{11}{16}\right)\) \(1\) \(i\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{3}{16}\right)\)