Properties

Label 3150.em
Modulus $3150$
Conductor $175$
Order $60$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3150, base_ring=CyclotomicField(60))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,33,10]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(73,3150))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(3150\)
Conductor: \(175\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(60\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from 175.x
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{60})\)
Fixed field: Number field defined by a degree 60 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(11\) \(13\) \(17\) \(19\) \(23\) \(29\) \(31\) \(37\) \(41\) \(43\)
\(\chi_{3150}(73,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{19}{60}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{23}{60}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{17}{30}\right)\) \(e\left(\frac{17}{60}\right)\) \(e\left(\frac{7}{10}\right)\) \(i\)
\(\chi_{3150}(397,\cdot)\) \(1\) \(1\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{53}{60}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{1}{60}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{19}{30}\right)\) \(e\left(\frac{19}{60}\right)\) \(e\left(\frac{9}{10}\right)\) \(-i\)
\(\chi_{3150}(523,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{59}{60}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{43}{60}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{7}{30}\right)\) \(e\left(\frac{37}{60}\right)\) \(e\left(\frac{7}{10}\right)\) \(i\)
\(\chi_{3150}(577,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{49}{60}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{53}{60}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{17}{30}\right)\) \(e\left(\frac{47}{60}\right)\) \(e\left(\frac{7}{10}\right)\) \(-i\)
\(\chi_{3150}(703,\cdot)\) \(1\) \(1\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{43}{60}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{11}{60}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{29}{30}\right)\) \(e\left(\frac{29}{60}\right)\) \(e\left(\frac{9}{10}\right)\) \(i\)
\(\chi_{3150}(1027,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{29}{60}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{13}{60}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{7}{30}\right)\) \(e\left(\frac{7}{60}\right)\) \(e\left(\frac{7}{10}\right)\) \(-i\)
\(\chi_{3150}(1153,\cdot)\) \(1\) \(1\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{23}{60}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{31}{60}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{19}{30}\right)\) \(e\left(\frac{49}{60}\right)\) \(e\left(\frac{9}{10}\right)\) \(i\)
\(\chi_{3150}(1333,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{7}{60}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{59}{60}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{11}{30}\right)\) \(e\left(\frac{41}{60}\right)\) \(e\left(\frac{1}{10}\right)\) \(i\)
\(\chi_{3150}(1783,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{47}{60}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{19}{60}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{1}{30}\right)\) \(e\left(\frac{1}{60}\right)\) \(e\left(\frac{1}{10}\right)\) \(i\)
\(\chi_{3150}(1837,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{1}{60}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{17}{60}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{23}{30}\right)\) \(e\left(\frac{23}{60}\right)\) \(e\left(\frac{3}{10}\right)\) \(-i\)
\(\chi_{3150}(1963,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{31}{60}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{47}{60}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{23}{30}\right)\) \(e\left(\frac{53}{60}\right)\) \(e\left(\frac{3}{10}\right)\) \(i\)
\(\chi_{3150}(2287,\cdot)\) \(1\) \(1\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{41}{60}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{37}{60}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{13}{30}\right)\) \(e\left(\frac{43}{60}\right)\) \(e\left(\frac{3}{10}\right)\) \(-i\)
\(\chi_{3150}(2413,\cdot)\) \(1\) \(1\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{11}{60}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{7}{60}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{13}{30}\right)\) \(e\left(\frac{13}{60}\right)\) \(e\left(\frac{3}{10}\right)\) \(i\)
\(\chi_{3150}(2467,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{37}{60}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{29}{60}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{11}{30}\right)\) \(e\left(\frac{11}{60}\right)\) \(e\left(\frac{1}{10}\right)\) \(-i\)
\(\chi_{3150}(2917,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{17}{60}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{49}{60}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{1}{30}\right)\) \(e\left(\frac{31}{60}\right)\) \(e\left(\frac{1}{10}\right)\) \(-i\)
\(\chi_{3150}(3097,\cdot)\) \(1\) \(1\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{13}{60}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{41}{60}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{29}{30}\right)\) \(e\left(\frac{59}{60}\right)\) \(e\left(\frac{9}{10}\right)\) \(-i\)