Properties

Label 319.113
Modulus $319$
Conductor $319$
Order $140$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(319, base_ring=CyclotomicField(140))
 
M = H._module
 
chi = DirichletCharacter(H, M([112,95]))
 
pari: [g,chi] = znchar(Mod(113,319))
 

Basic properties

Modulus: \(319\)
Conductor: \(319\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(140\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 319.w

\(\chi_{319}(3,\cdot)\) \(\chi_{319}(14,\cdot)\) \(\chi_{319}(15,\cdot)\) \(\chi_{319}(26,\cdot)\) \(\chi_{319}(27,\cdot)\) \(\chi_{319}(31,\cdot)\) \(\chi_{319}(37,\cdot)\) \(\chi_{319}(47,\cdot)\) \(\chi_{319}(48,\cdot)\) \(\chi_{319}(60,\cdot)\) \(\chi_{319}(69,\cdot)\) \(\chi_{319}(97,\cdot)\) \(\chi_{319}(102,\cdot)\) \(\chi_{319}(108,\cdot)\) \(\chi_{319}(113,\cdot)\) \(\chi_{319}(114,\cdot)\) \(\chi_{319}(119,\cdot)\) \(\chi_{319}(124,\cdot)\) \(\chi_{319}(126,\cdot)\) \(\chi_{319}(130,\cdot)\) \(\chi_{319}(135,\cdot)\) \(\chi_{319}(137,\cdot)\) \(\chi_{319}(147,\cdot)\) \(\chi_{319}(148,\cdot)\) \(\chi_{319}(159,\cdot)\) \(\chi_{319}(163,\cdot)\) \(\chi_{319}(185,\cdot)\) \(\chi_{319}(192,\cdot)\) \(\chi_{319}(201,\cdot)\) \(\chi_{319}(213,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{140})$
Fixed field: Number field defined by a degree 140 polynomial (not computed)

Values on generators

\((233,89)\) → \((e\left(\frac{4}{5}\right),e\left(\frac{19}{28}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(7\)\(8\)\(9\)\(10\)\(12\)
\( \chi_{ 319 }(113, a) \) \(-1\)\(1\)\(e\left(\frac{67}{140}\right)\)\(e\left(\frac{111}{140}\right)\)\(e\left(\frac{67}{70}\right)\)\(e\left(\frac{9}{70}\right)\)\(e\left(\frac{19}{70}\right)\)\(e\left(\frac{26}{35}\right)\)\(e\left(\frac{61}{140}\right)\)\(e\left(\frac{41}{70}\right)\)\(e\left(\frac{17}{28}\right)\)\(-i\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 319 }(113,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 319 }(113,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 319 }(113,·),\chi_{ 319 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 319 }(113,·)) \;\) at \(\; a,b = \) e.g. 1,2