Properties

Label 3216.2353
Modulus $3216$
Conductor $67$
Order $22$
Real no
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3216, base_ring=CyclotomicField(22))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,0,0,1]))
 
pari: [g,chi] = znchar(Mod(2353,3216))
 

Basic properties

Modulus: \(3216\)
Conductor: \(67\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(22\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{67}(8,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 3216.cl

\(\chi_{3216}(673,\cdot)\) \(\chi_{3216}(913,\cdot)\) \(\chi_{3216}(1057,\cdot)\) \(\chi_{3216}(1249,\cdot)\) \(\chi_{3216}(1345,\cdot)\) \(\chi_{3216}(1393,\cdot)\) \(\chi_{3216}(1921,\cdot)\) \(\chi_{3216}(2305,\cdot)\) \(\chi_{3216}(2353,\cdot)\) \(\chi_{3216}(3073,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{11})\)
Fixed field: Number field defined by a degree 22 polynomial

Values on generators

\((2815,805,1073,337)\) → \((1,1,1,e\left(\frac{1}{22}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(13\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)
\( \chi_{ 3216 }(2353, a) \) \(-1\)\(1\)\(e\left(\frac{15}{22}\right)\)\(e\left(\frac{1}{22}\right)\)\(e\left(\frac{15}{22}\right)\)\(e\left(\frac{19}{22}\right)\)\(e\left(\frac{10}{11}\right)\)\(e\left(\frac{5}{11}\right)\)\(e\left(\frac{3}{11}\right)\)\(e\left(\frac{4}{11}\right)\)\(1\)\(e\left(\frac{3}{22}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 3216 }(2353,a) \;\) at \(\;a = \) e.g. 2