from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(323, base_ring=CyclotomicField(16))
M = H._module
chi = DirichletCharacter(H, M([9,0]))
pari: [g,chi] = znchar(Mod(286,323))
Basic properties
Modulus: | \(323\) | |
Conductor: | \(17\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(16\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from \(\chi_{17}(14,\cdot)\) | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | odd | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 323.q
\(\chi_{323}(20,\cdot)\) \(\chi_{323}(39,\cdot)\) \(\chi_{323}(58,\cdot)\) \(\chi_{323}(96,\cdot)\) \(\chi_{323}(210,\cdot)\) \(\chi_{323}(248,\cdot)\) \(\chi_{323}(267,\cdot)\) \(\chi_{323}(286,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{16})\) |
Fixed field: | Number field defined by a degree 16 polynomial |
Values on generators
\((20,154)\) → \((e\left(\frac{9}{16}\right),1)\)
First values
\(a\) | \(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(11\) |
\( \chi_{ 323 }(286, a) \) | \(-1\) | \(1\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{9}{16}\right)\) | \(-i\) | \(e\left(\frac{13}{16}\right)\) | \(e\left(\frac{7}{16}\right)\) | \(e\left(\frac{3}{16}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{11}{16}\right)\) | \(e\left(\frac{15}{16}\right)\) |
sage: chi.jacobi_sum(n)
Gauss sum
sage: chi.gauss_sum(a)
pari: znchargauss(g,chi,a)
Jacobi sum
sage: chi.jacobi_sum(n)
Kloosterman sum
sage: chi.kloosterman_sum(a,b)