Properties

Label 323.311
Modulus $323$
Conductor $323$
Order $48$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(323, base_ring=CyclotomicField(48))
 
M = H._module
 
chi = DirichletCharacter(H, M([15,16]))
 
pari: [g,chi] = znchar(Mod(311,323))
 

Basic properties

Modulus: \(323\)
Conductor: \(323\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(48\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 323.z

\(\chi_{323}(7,\cdot)\) \(\chi_{323}(11,\cdot)\) \(\chi_{323}(45,\cdot)\) \(\chi_{323}(125,\cdot)\) \(\chi_{323}(159,\cdot)\) \(\chi_{323}(163,\cdot)\) \(\chi_{323}(182,\cdot)\) \(\chi_{323}(197,\cdot)\) \(\chi_{323}(201,\cdot)\) \(\chi_{323}(216,\cdot)\) \(\chi_{323}(235,\cdot)\) \(\chi_{323}(258,\cdot)\) \(\chi_{323}(277,\cdot)\) \(\chi_{323}(292,\cdot)\) \(\chi_{323}(296,\cdot)\) \(\chi_{323}(311,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{48})\)
Fixed field: Number field defined by a degree 48 polynomial

Values on generators

\((20,154)\) → \((e\left(\frac{5}{16}\right),e\left(\frac{1}{3}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(7\)\(8\)\(9\)\(10\)\(11\)
\( \chi_{ 323 }(311, a) \) \(-1\)\(1\)\(e\left(\frac{17}{24}\right)\)\(e\left(\frac{31}{48}\right)\)\(e\left(\frac{5}{12}\right)\)\(e\left(\frac{43}{48}\right)\)\(e\left(\frac{17}{48}\right)\)\(e\left(\frac{7}{16}\right)\)\(e\left(\frac{1}{8}\right)\)\(e\left(\frac{7}{24}\right)\)\(e\left(\frac{29}{48}\right)\)\(e\left(\frac{3}{16}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 323 }(311,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 323 }(311,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 323 }(311,·),\chi_{ 323 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 323 }(311,·)) \;\) at \(\; a,b = \) e.g. 1,2