sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(323, base_ring=CyclotomicField(48))
M = H._module
chi = DirichletCharacter(H, M([15,16]))
pari:[g,chi] = znchar(Mod(311,323))
Modulus: | 323 | |
Conductor: | 323 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 48 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ323(7,⋅)
χ323(11,⋅)
χ323(45,⋅)
χ323(125,⋅)
χ323(159,⋅)
χ323(163,⋅)
χ323(182,⋅)
χ323(197,⋅)
χ323(201,⋅)
χ323(216,⋅)
χ323(235,⋅)
χ323(258,⋅)
χ323(277,⋅)
χ323(292,⋅)
χ323(296,⋅)
χ323(311,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(20,154) → (e(165),e(31))
a |
−1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
χ323(311,a) |
−1 | 1 | e(2417) | e(4831) | e(125) | e(4843) | e(4817) | e(167) | e(81) | e(247) | e(4829) | e(163) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)