Properties

Label 323.32
Modulus $323$
Conductor $323$
Order $72$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(323, base_ring=CyclotomicField(72))
 
M = H._module
 
chi = DirichletCharacter(H, M([27,20]))
 
pari: [g,chi] = znchar(Mod(32,323))
 

Basic properties

Modulus: \(323\)
Conductor: \(323\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(72\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 323.ba

\(\chi_{323}(2,\cdot)\) \(\chi_{323}(15,\cdot)\) \(\chi_{323}(32,\cdot)\) \(\chi_{323}(53,\cdot)\) \(\chi_{323}(59,\cdot)\) \(\chi_{323}(60,\cdot)\) \(\chi_{323}(70,\cdot)\) \(\chi_{323}(110,\cdot)\) \(\chi_{323}(117,\cdot)\) \(\chi_{323}(127,\cdot)\) \(\chi_{323}(128,\cdot)\) \(\chi_{323}(155,\cdot)\) \(\chi_{323}(162,\cdot)\) \(\chi_{323}(185,\cdot)\) \(\chi_{323}(212,\cdot)\) \(\chi_{323}(219,\cdot)\) \(\chi_{323}(223,\cdot)\) \(\chi_{323}(230,\cdot)\) \(\chi_{323}(257,\cdot)\) \(\chi_{323}(280,\cdot)\) \(\chi_{323}(281,\cdot)\) \(\chi_{323}(287,\cdot)\) \(\chi_{323}(298,\cdot)\) \(\chi_{323}(314,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{72})$
Fixed field: Number field defined by a degree 72 polynomial

Values on generators

\((20,154)\) → \((e\left(\frac{3}{8}\right),e\left(\frac{5}{18}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(7\)\(8\)\(9\)\(10\)\(11\)
\( \chi_{ 323 }(32, a) \) \(-1\)\(1\)\(e\left(\frac{19}{36}\right)\)\(e\left(\frac{71}{72}\right)\)\(e\left(\frac{1}{18}\right)\)\(e\left(\frac{23}{72}\right)\)\(e\left(\frac{37}{72}\right)\)\(e\left(\frac{19}{24}\right)\)\(e\left(\frac{7}{12}\right)\)\(e\left(\frac{35}{36}\right)\)\(e\left(\frac{61}{72}\right)\)\(e\left(\frac{23}{24}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 323 }(32,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 323 }(32,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 323 }(32,·),\chi_{ 323 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 323 }(32,·)) \;\) at \(\; a,b = \) e.g. 1,2