Properties

Label 324.161
Modulus 324324
Conductor 33
Order 22
Real yes
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(324, base_ring=CyclotomicField(2))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,1]))
 
pari: [g,chi] = znchar(Mod(161,324))
 

Basic properties

Modulus: 324324
Conductor: 33
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 22
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: yes
Primitive: no, induced from χ3(2,)\chi_{3}(2,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 324.c

χ324(161,)\chi_{324}(161,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q\Q
Fixed field: Q(3)\Q(\sqrt{-3})

Values on generators

(163,245)(163,245)(1,1)(1,-1)

First values

aa 1-111557711111313171719192323252529293131
χ324(161,a) \chi_{ 324 }(161, a) 1-1111-1111-1111-1111-1111-111
sage: chi.jacobi_sum(n)
 
χ324(161,a)   \chi_{ 324 }(161,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ324(161,))   \tau_{ a }( \chi_{ 324 }(161,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ324(161,),χ324(n,))   J(\chi_{ 324 }(161,·),\chi_{ 324 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ324(161,))  K(a,b,\chi_{ 324 }(161,·)) \; at   a,b=\; a,b = e.g. 1,2