from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(325, base_ring=CyclotomicField(30))
M = H._module
chi = DirichletCharacter(H, M([12,10]))
pari: [g,chi] = znchar(Mod(81,325))
Basic properties
Modulus: | \(325\) | |
Conductor: | \(325\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(15\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | yes | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 325.y
\(\chi_{325}(16,\cdot)\) \(\chi_{325}(61,\cdot)\) \(\chi_{325}(81,\cdot)\) \(\chi_{325}(146,\cdot)\) \(\chi_{325}(191,\cdot)\) \(\chi_{325}(211,\cdot)\) \(\chi_{325}(256,\cdot)\) \(\chi_{325}(321,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{15})\) |
Fixed field: | Number field defined by a degree 15 polynomial |
Values on generators
\((27,301)\) → \((e\left(\frac{2}{5}\right),e\left(\frac{1}{3}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(7\) | \(8\) | \(9\) | \(11\) | \(12\) | \(14\) |
\( \chi_{ 325 }(81, a) \) | \(1\) | \(1\) | \(e\left(\frac{11}{15}\right)\) | \(e\left(\frac{2}{15}\right)\) | \(e\left(\frac{7}{15}\right)\) | \(e\left(\frac{13}{15}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{4}{15}\right)\) | \(e\left(\frac{11}{15}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{2}{5}\right)\) |
sage: chi.jacobi_sum(n)
Gauss sum
sage: chi.gauss_sum(a)
pari: znchargauss(g,chi,a)
Jacobi sum
sage: chi.jacobi_sum(n)
Kloosterman sum
sage: chi.kloosterman_sum(a,b)