Properties

Label 3264.dn
Modulus $3264$
Conductor $1088$
Order $16$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3264, base_ring=CyclotomicField(16))
 
M = H._module
 
chi = DirichletCharacter(H, M([8,7,0,13]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(403,3264))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(3264\)
Conductor: \(1088\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(16\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from 1088.bv
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{16})\)
Fixed field: 16.16.1730228566815155980950535730783370329718784.2

Characters in Galois orbit

Character \(-1\) \(1\) \(5\) \(7\) \(11\) \(13\) \(19\) \(23\) \(25\) \(29\) \(31\) \(35\)
\(\chi_{3264}(403,\cdot)\) \(1\) \(1\) \(-1\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{13}{16}\right)\) \(1\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{5}{16}\right)\)
\(\chi_{3264}(1099,\cdot)\) \(1\) \(1\) \(-1\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{7}{16}\right)\) \(1\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{15}{16}\right)\)
\(\chi_{3264}(2179,\cdot)\) \(1\) \(1\) \(-1\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{1}{16}\right)\) \(1\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{9}{16}\right)\)
\(\chi_{3264}(2203,\cdot)\) \(1\) \(1\) \(-1\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{3}{16}\right)\) \(1\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{11}{16}\right)\)
\(\chi_{3264}(2275,\cdot)\) \(1\) \(1\) \(-1\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{9}{16}\right)\) \(1\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{1}{16}\right)\)
\(\chi_{3264}(2419,\cdot)\) \(1\) \(1\) \(-1\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{5}{16}\right)\) \(1\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{13}{16}\right)\)
\(\chi_{3264}(2539,\cdot)\) \(1\) \(1\) \(-1\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{15}{16}\right)\) \(1\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{7}{16}\right)\)
\(\chi_{3264}(3067,\cdot)\) \(1\) \(1\) \(-1\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{11}{16}\right)\) \(1\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{3}{16}\right)\)