Properties

Label 3267.838
Modulus 32673267
Conductor 1111
Order 1010
Real no
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3267, base_ring=CyclotomicField(10))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,1]))
 
pari: [g,chi] = znchar(Mod(838,3267))
 

Basic properties

Modulus: 32673267
Conductor: 1111
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 1010
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ11(2,)\chi_{11}(2,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 3267.l

χ3267(838,)\chi_{3267}(838,\cdot) χ3267(2296,)\chi_{3267}(2296,\cdot) χ3267(2944,)\chi_{3267}(2944,\cdot) χ3267(2998,)\chi_{3267}(2998,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ5)\Q(\zeta_{5})
Fixed field: Q(ζ11)\Q(\zeta_{11})

Values on generators

(3026,244)(3026,244)(1,e(110))(1,e\left(\frac{1}{10}\right))

First values

aa 1-111224455778810101313141416161717
χ3267(838,a) \chi_{ 3267 }(838, a) 1-111e(110)e\left(\frac{1}{10}\right)e(15)e\left(\frac{1}{5}\right)e(25)e\left(\frac{2}{5}\right)e(710)e\left(\frac{7}{10}\right)e(310)e\left(\frac{3}{10}\right)1-1e(110)e\left(\frac{1}{10}\right)e(45)e\left(\frac{4}{5}\right)e(25)e\left(\frac{2}{5}\right)e(910)e\left(\frac{9}{10}\right)
sage: chi.jacobi_sum(n)
 
χ3267(838,a)   \chi_{ 3267 }(838,a) \; at   a=\;a = e.g. 2