Properties

Label 3267.928
Modulus $3267$
Conductor $99$
Order $15$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3267, base_ring=CyclotomicField(30))
 
M = H._module
 
chi = DirichletCharacter(H, M([10,6]))
 
pari: [g,chi] = znchar(Mod(928,3267))
 

Basic properties

Modulus: \(3267\)
Conductor: \(99\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(15\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{99}(4,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 3267.o

\(\chi_{3267}(856,\cdot)\) \(\chi_{3267}(874,\cdot)\) \(\chi_{3267}(928,\cdot)\) \(\chi_{3267}(1576,\cdot)\) \(\chi_{3267}(1963,\cdot)\) \(\chi_{3267}(2017,\cdot)\) \(\chi_{3267}(2665,\cdot)\) \(\chi_{3267}(3034,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{15})\)
Fixed field: 15.15.10943023107606534329121.1

Values on generators

\((3026,244)\) → \((e\left(\frac{1}{3}\right),e\left(\frac{1}{5}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(7\)\(8\)\(10\)\(13\)\(14\)\(16\)\(17\)
\( \chi_{ 3267 }(928, a) \) \(1\)\(1\)\(e\left(\frac{8}{15}\right)\)\(e\left(\frac{1}{15}\right)\)\(e\left(\frac{7}{15}\right)\)\(e\left(\frac{11}{15}\right)\)\(e\left(\frac{3}{5}\right)\)\(1\)\(e\left(\frac{13}{15}\right)\)\(e\left(\frac{4}{15}\right)\)\(e\left(\frac{2}{15}\right)\)\(e\left(\frac{4}{5}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 3267 }(928,a) \;\) at \(\;a = \) e.g. 2