from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3267, base_ring=CyclotomicField(30))
M = H._module
chi = DirichletCharacter(H, M([10,6]))
pari: [g,chi] = znchar(Mod(928,3267))
Basic properties
Modulus: | \(3267\) | |
Conductor: | \(99\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(15\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from \(\chi_{99}(4,\cdot)\) | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | no | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 3267.o
\(\chi_{3267}(856,\cdot)\) \(\chi_{3267}(874,\cdot)\) \(\chi_{3267}(928,\cdot)\) \(\chi_{3267}(1576,\cdot)\) \(\chi_{3267}(1963,\cdot)\) \(\chi_{3267}(2017,\cdot)\) \(\chi_{3267}(2665,\cdot)\) \(\chi_{3267}(3034,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{15})\) |
Fixed field: | 15.15.10943023107606534329121.1 |
Values on generators
\((3026,244)\) → \((e\left(\frac{1}{3}\right),e\left(\frac{1}{5}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(7\) | \(8\) | \(10\) | \(13\) | \(14\) | \(16\) | \(17\) |
\( \chi_{ 3267 }(928, a) \) | \(1\) | \(1\) | \(e\left(\frac{8}{15}\right)\) | \(e\left(\frac{1}{15}\right)\) | \(e\left(\frac{7}{15}\right)\) | \(e\left(\frac{11}{15}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(1\) | \(e\left(\frac{13}{15}\right)\) | \(e\left(\frac{4}{15}\right)\) | \(e\left(\frac{2}{15}\right)\) | \(e\left(\frac{4}{5}\right)\) |
sage: chi.jacobi_sum(n)