from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3267, base_ring=CyclotomicField(90))
M = H._module
chi = DirichletCharacter(H, M([55,27]))
chi.galois_orbit()
[g,chi] = znchar(Mod(239,3267))
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Basic properties
Modulus: | \(3267\) | |
Conductor: | \(297\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(90\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from 297.x | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | no | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Related number fields
Field of values: | $\Q(\zeta_{45})$ |
Fixed field: | Number field defined by a degree 90 polynomial |
Characters in Galois orbit
Character | \(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(7\) | \(8\) | \(10\) | \(13\) | \(14\) | \(16\) | \(17\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{3267}(239,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{41}{45}\right)\) | \(e\left(\frac{37}{45}\right)\) | \(e\left(\frac{23}{90}\right)\) | \(e\left(\frac{79}{90}\right)\) | \(e\left(\frac{11}{15}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{17}{90}\right)\) | \(e\left(\frac{71}{90}\right)\) | \(e\left(\frac{29}{45}\right)\) | \(e\left(\frac{13}{15}\right)\) |
\(\chi_{3267}(524,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{19}{45}\right)\) | \(e\left(\frac{38}{45}\right)\) | \(e\left(\frac{37}{90}\right)\) | \(e\left(\frac{41}{90}\right)\) | \(e\left(\frac{4}{15}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{43}{90}\right)\) | \(e\left(\frac{79}{90}\right)\) | \(e\left(\frac{31}{45}\right)\) | \(e\left(\frac{2}{15}\right)\) |
\(\chi_{3267}(578,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{28}{45}\right)\) | \(e\left(\frac{11}{45}\right)\) | \(e\left(\frac{19}{90}\right)\) | \(e\left(\frac{77}{90}\right)\) | \(e\left(\frac{13}{15}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{61}{90}\right)\) | \(e\left(\frac{43}{90}\right)\) | \(e\left(\frac{22}{45}\right)\) | \(e\left(\frac{14}{15}\right)\) |
\(\chi_{3267}(596,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{7}{45}\right)\) | \(e\left(\frac{14}{45}\right)\) | \(e\left(\frac{61}{90}\right)\) | \(e\left(\frac{53}{90}\right)\) | \(e\left(\frac{7}{15}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{49}{90}\right)\) | \(e\left(\frac{67}{90}\right)\) | \(e\left(\frac{28}{45}\right)\) | \(e\left(\frac{11}{15}\right)\) |
\(\chi_{3267}(887,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{14}{45}\right)\) | \(e\left(\frac{28}{45}\right)\) | \(e\left(\frac{77}{90}\right)\) | \(e\left(\frac{61}{90}\right)\) | \(e\left(\frac{14}{15}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{53}{90}\right)\) | \(e\left(\frac{89}{90}\right)\) | \(e\left(\frac{11}{45}\right)\) | \(e\left(\frac{7}{15}\right)\) |
\(\chi_{3267}(941,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{23}{45}\right)\) | \(e\left(\frac{1}{45}\right)\) | \(e\left(\frac{59}{90}\right)\) | \(e\left(\frac{7}{90}\right)\) | \(e\left(\frac{8}{15}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{71}{90}\right)\) | \(e\left(\frac{53}{90}\right)\) | \(e\left(\frac{2}{45}\right)\) | \(e\left(\frac{4}{15}\right)\) |
\(\chi_{3267}(959,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{2}{45}\right)\) | \(e\left(\frac{4}{45}\right)\) | \(e\left(\frac{11}{90}\right)\) | \(e\left(\frac{73}{90}\right)\) | \(e\left(\frac{2}{15}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{59}{90}\right)\) | \(e\left(\frac{77}{90}\right)\) | \(e\left(\frac{8}{45}\right)\) | \(e\left(\frac{1}{15}\right)\) |
\(\chi_{3267}(965,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{31}{45}\right)\) | \(e\left(\frac{17}{45}\right)\) | \(e\left(\frac{13}{90}\right)\) | \(e\left(\frac{29}{90}\right)\) | \(e\left(\frac{1}{15}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{37}{90}\right)\) | \(e\left(\frac{1}{90}\right)\) | \(e\left(\frac{34}{45}\right)\) | \(e\left(\frac{8}{15}\right)\) |
\(\chi_{3267}(1328,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{26}{45}\right)\) | \(e\left(\frac{7}{45}\right)\) | \(e\left(\frac{53}{90}\right)\) | \(e\left(\frac{49}{90}\right)\) | \(e\left(\frac{11}{15}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{47}{90}\right)\) | \(e\left(\frac{11}{90}\right)\) | \(e\left(\frac{14}{45}\right)\) | \(e\left(\frac{13}{15}\right)\) |
\(\chi_{3267}(1613,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{4}{45}\right)\) | \(e\left(\frac{8}{45}\right)\) | \(e\left(\frac{67}{90}\right)\) | \(e\left(\frac{11}{90}\right)\) | \(e\left(\frac{4}{15}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{73}{90}\right)\) | \(e\left(\frac{19}{90}\right)\) | \(e\left(\frac{16}{45}\right)\) | \(e\left(\frac{2}{15}\right)\) |
\(\chi_{3267}(1667,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{13}{45}\right)\) | \(e\left(\frac{26}{45}\right)\) | \(e\left(\frac{49}{90}\right)\) | \(e\left(\frac{47}{90}\right)\) | \(e\left(\frac{13}{15}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{90}\right)\) | \(e\left(\frac{73}{90}\right)\) | \(e\left(\frac{7}{45}\right)\) | \(e\left(\frac{14}{15}\right)\) |
\(\chi_{3267}(1685,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{37}{45}\right)\) | \(e\left(\frac{29}{45}\right)\) | \(e\left(\frac{1}{90}\right)\) | \(e\left(\frac{23}{90}\right)\) | \(e\left(\frac{7}{15}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{79}{90}\right)\) | \(e\left(\frac{7}{90}\right)\) | \(e\left(\frac{13}{45}\right)\) | \(e\left(\frac{11}{15}\right)\) |
\(\chi_{3267}(1976,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{44}{45}\right)\) | \(e\left(\frac{43}{45}\right)\) | \(e\left(\frac{17}{90}\right)\) | \(e\left(\frac{31}{90}\right)\) | \(e\left(\frac{14}{15}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{83}{90}\right)\) | \(e\left(\frac{29}{90}\right)\) | \(e\left(\frac{41}{45}\right)\) | \(e\left(\frac{7}{15}\right)\) |
\(\chi_{3267}(2030,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{8}{45}\right)\) | \(e\left(\frac{16}{45}\right)\) | \(e\left(\frac{89}{90}\right)\) | \(e\left(\frac{67}{90}\right)\) | \(e\left(\frac{8}{15}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{11}{90}\right)\) | \(e\left(\frac{83}{90}\right)\) | \(e\left(\frac{32}{45}\right)\) | \(e\left(\frac{4}{15}\right)\) |
\(\chi_{3267}(2048,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{32}{45}\right)\) | \(e\left(\frac{19}{45}\right)\) | \(e\left(\frac{41}{90}\right)\) | \(e\left(\frac{43}{90}\right)\) | \(e\left(\frac{2}{15}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{89}{90}\right)\) | \(e\left(\frac{17}{90}\right)\) | \(e\left(\frac{38}{45}\right)\) | \(e\left(\frac{1}{15}\right)\) |
\(\chi_{3267}(2054,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{16}{45}\right)\) | \(e\left(\frac{32}{45}\right)\) | \(e\left(\frac{43}{90}\right)\) | \(e\left(\frac{89}{90}\right)\) | \(e\left(\frac{1}{15}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{67}{90}\right)\) | \(e\left(\frac{31}{90}\right)\) | \(e\left(\frac{19}{45}\right)\) | \(e\left(\frac{8}{15}\right)\) |
\(\chi_{3267}(2417,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{11}{45}\right)\) | \(e\left(\frac{22}{45}\right)\) | \(e\left(\frac{83}{90}\right)\) | \(e\left(\frac{19}{90}\right)\) | \(e\left(\frac{11}{15}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{77}{90}\right)\) | \(e\left(\frac{41}{90}\right)\) | \(e\left(\frac{44}{45}\right)\) | \(e\left(\frac{13}{15}\right)\) |
\(\chi_{3267}(2702,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{34}{45}\right)\) | \(e\left(\frac{23}{45}\right)\) | \(e\left(\frac{7}{90}\right)\) | \(e\left(\frac{71}{90}\right)\) | \(e\left(\frac{4}{15}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{13}{90}\right)\) | \(e\left(\frac{49}{90}\right)\) | \(e\left(\frac{1}{45}\right)\) | \(e\left(\frac{2}{15}\right)\) |
\(\chi_{3267}(2756,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{43}{45}\right)\) | \(e\left(\frac{41}{45}\right)\) | \(e\left(\frac{79}{90}\right)\) | \(e\left(\frac{17}{90}\right)\) | \(e\left(\frac{13}{15}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{31}{90}\right)\) | \(e\left(\frac{13}{90}\right)\) | \(e\left(\frac{37}{45}\right)\) | \(e\left(\frac{14}{15}\right)\) |
\(\chi_{3267}(2774,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{22}{45}\right)\) | \(e\left(\frac{44}{45}\right)\) | \(e\left(\frac{31}{90}\right)\) | \(e\left(\frac{83}{90}\right)\) | \(e\left(\frac{7}{15}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{19}{90}\right)\) | \(e\left(\frac{37}{90}\right)\) | \(e\left(\frac{43}{45}\right)\) | \(e\left(\frac{11}{15}\right)\) |
\(\chi_{3267}(3065,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{29}{45}\right)\) | \(e\left(\frac{13}{45}\right)\) | \(e\left(\frac{47}{90}\right)\) | \(e\left(\frac{1}{90}\right)\) | \(e\left(\frac{14}{15}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{23}{90}\right)\) | \(e\left(\frac{59}{90}\right)\) | \(e\left(\frac{26}{45}\right)\) | \(e\left(\frac{7}{15}\right)\) |
\(\chi_{3267}(3119,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{38}{45}\right)\) | \(e\left(\frac{31}{45}\right)\) | \(e\left(\frac{29}{90}\right)\) | \(e\left(\frac{37}{90}\right)\) | \(e\left(\frac{8}{15}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{41}{90}\right)\) | \(e\left(\frac{23}{90}\right)\) | \(e\left(\frac{17}{45}\right)\) | \(e\left(\frac{4}{15}\right)\) |
\(\chi_{3267}(3137,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{17}{45}\right)\) | \(e\left(\frac{34}{45}\right)\) | \(e\left(\frac{71}{90}\right)\) | \(e\left(\frac{13}{90}\right)\) | \(e\left(\frac{2}{15}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{29}{90}\right)\) | \(e\left(\frac{47}{90}\right)\) | \(e\left(\frac{23}{45}\right)\) | \(e\left(\frac{1}{15}\right)\) |
\(\chi_{3267}(3143,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{1}{45}\right)\) | \(e\left(\frac{2}{45}\right)\) | \(e\left(\frac{73}{90}\right)\) | \(e\left(\frac{59}{90}\right)\) | \(e\left(\frac{1}{15}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{7}{90}\right)\) | \(e\left(\frac{61}{90}\right)\) | \(e\left(\frac{4}{45}\right)\) | \(e\left(\frac{8}{15}\right)\) |