from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3267, base_ring=CyclotomicField(330))
M = H._module
chi = DirichletCharacter(H, M([110,126]))
chi.galois_orbit()
[g,chi] = znchar(Mod(37,3267))
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Basic properties
Modulus: | \(3267\) | |
Conductor: | \(1089\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(165\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from 1089.bc | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | no | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Related number fields
Field of values: | $\Q(\zeta_{165})$ |
Fixed field: | Number field defined by a degree 165 polynomial (not computed) |
First 31 of 80 characters in Galois orbit
Character | \(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(7\) | \(8\) | \(10\) | \(13\) | \(14\) | \(16\) | \(17\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{3267}(37,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{118}{165}\right)\) | \(e\left(\frac{71}{165}\right)\) | \(e\left(\frac{152}{165}\right)\) | \(e\left(\frac{1}{165}\right)\) | \(e\left(\frac{8}{55}\right)\) | \(e\left(\frac{7}{11}\right)\) | \(e\left(\frac{38}{165}\right)\) | \(e\left(\frac{119}{165}\right)\) | \(e\left(\frac{142}{165}\right)\) | \(e\left(\frac{39}{55}\right)\) |
\(\chi_{3267}(64,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{64}{165}\right)\) | \(e\left(\frac{128}{165}\right)\) | \(e\left(\frac{116}{165}\right)\) | \(e\left(\frac{118}{165}\right)\) | \(e\left(\frac{9}{55}\right)\) | \(e\left(\frac{1}{11}\right)\) | \(e\left(\frac{29}{165}\right)\) | \(e\left(\frac{17}{165}\right)\) | \(e\left(\frac{91}{165}\right)\) | \(e\left(\frac{37}{55}\right)\) |
\(\chi_{3267}(91,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{52}{165}\right)\) | \(e\left(\frac{104}{165}\right)\) | \(e\left(\frac{53}{165}\right)\) | \(e\left(\frac{34}{165}\right)\) | \(e\left(\frac{52}{55}\right)\) | \(e\left(\frac{7}{11}\right)\) | \(e\left(\frac{137}{165}\right)\) | \(e\left(\frac{86}{165}\right)\) | \(e\left(\frac{43}{165}\right)\) | \(e\left(\frac{6}{55}\right)\) |
\(\chi_{3267}(181,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{26}{165}\right)\) | \(e\left(\frac{52}{165}\right)\) | \(e\left(\frac{109}{165}\right)\) | \(e\left(\frac{17}{165}\right)\) | \(e\left(\frac{26}{55}\right)\) | \(e\left(\frac{9}{11}\right)\) | \(e\left(\frac{151}{165}\right)\) | \(e\left(\frac{43}{165}\right)\) | \(e\left(\frac{104}{165}\right)\) | \(e\left(\frac{3}{55}\right)\) |
\(\chi_{3267}(235,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{38}{165}\right)\) | \(e\left(\frac{76}{165}\right)\) | \(e\left(\frac{7}{165}\right)\) | \(e\left(\frac{101}{165}\right)\) | \(e\left(\frac{38}{55}\right)\) | \(e\left(\frac{3}{11}\right)\) | \(e\left(\frac{43}{165}\right)\) | \(e\left(\frac{139}{165}\right)\) | \(e\left(\frac{152}{165}\right)\) | \(e\left(\frac{34}{55}\right)\) |
\(\chi_{3267}(262,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{59}{165}\right)\) | \(e\left(\frac{118}{165}\right)\) | \(e\left(\frac{76}{165}\right)\) | \(e\left(\frac{83}{165}\right)\) | \(e\left(\frac{4}{55}\right)\) | \(e\left(\frac{9}{11}\right)\) | \(e\left(\frac{19}{165}\right)\) | \(e\left(\frac{142}{165}\right)\) | \(e\left(\frac{71}{165}\right)\) | \(e\left(\frac{47}{55}\right)\) |
\(\chi_{3267}(280,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{16}{165}\right)\) | \(e\left(\frac{32}{165}\right)\) | \(e\left(\frac{29}{165}\right)\) | \(e\left(\frac{112}{165}\right)\) | \(e\left(\frac{16}{55}\right)\) | \(e\left(\frac{3}{11}\right)\) | \(e\left(\frac{131}{165}\right)\) | \(e\left(\frac{128}{165}\right)\) | \(e\left(\frac{64}{165}\right)\) | \(e\left(\frac{23}{55}\right)\) |
\(\chi_{3267}(289,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{92}{165}\right)\) | \(e\left(\frac{19}{165}\right)\) | \(e\left(\frac{43}{165}\right)\) | \(e\left(\frac{149}{165}\right)\) | \(e\left(\frac{37}{55}\right)\) | \(e\left(\frac{9}{11}\right)\) | \(e\left(\frac{52}{165}\right)\) | \(e\left(\frac{76}{165}\right)\) | \(e\left(\frac{38}{165}\right)\) | \(e\left(\frac{36}{55}\right)\) |
\(\chi_{3267}(334,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{163}{165}\right)\) | \(e\left(\frac{161}{165}\right)\) | \(e\left(\frac{17}{165}\right)\) | \(e\left(\frac{151}{165}\right)\) | \(e\left(\frac{53}{55}\right)\) | \(e\left(\frac{1}{11}\right)\) | \(e\left(\frac{128}{165}\right)\) | \(e\left(\frac{149}{165}\right)\) | \(e\left(\frac{157}{165}\right)\) | \(e\left(\frac{4}{55}\right)\) |
\(\chi_{3267}(361,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{139}{165}\right)\) | \(e\left(\frac{113}{165}\right)\) | \(e\left(\frac{56}{165}\right)\) | \(e\left(\frac{148}{165}\right)\) | \(e\left(\frac{29}{55}\right)\) | \(e\left(\frac{2}{11}\right)\) | \(e\left(\frac{14}{165}\right)\) | \(e\left(\frac{122}{165}\right)\) | \(e\left(\frac{61}{165}\right)\) | \(e\left(\frac{52}{55}\right)\) |
\(\chi_{3267}(388,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{112}{165}\right)\) | \(e\left(\frac{59}{165}\right)\) | \(e\left(\frac{38}{165}\right)\) | \(e\left(\frac{124}{165}\right)\) | \(e\left(\frac{2}{55}\right)\) | \(e\left(\frac{10}{11}\right)\) | \(e\left(\frac{92}{165}\right)\) | \(e\left(\frac{71}{165}\right)\) | \(e\left(\frac{118}{165}\right)\) | \(e\left(\frac{51}{55}\right)\) |
\(\chi_{3267}(478,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{161}{165}\right)\) | \(e\left(\frac{157}{165}\right)\) | \(e\left(\frac{34}{165}\right)\) | \(e\left(\frac{137}{165}\right)\) | \(e\left(\frac{51}{55}\right)\) | \(e\left(\frac{2}{11}\right)\) | \(e\left(\frac{91}{165}\right)\) | \(e\left(\frac{133}{165}\right)\) | \(e\left(\frac{149}{165}\right)\) | \(e\left(\frac{8}{55}\right)\) |
\(\chi_{3267}(532,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{83}{165}\right)\) | \(e\left(\frac{1}{165}\right)\) | \(e\left(\frac{37}{165}\right)\) | \(e\left(\frac{86}{165}\right)\) | \(e\left(\frac{28}{55}\right)\) | \(e\left(\frac{8}{11}\right)\) | \(e\left(\frac{133}{165}\right)\) | \(e\left(\frac{4}{165}\right)\) | \(e\left(\frac{2}{165}\right)\) | \(e\left(\frac{54}{55}\right)\) |
\(\chi_{3267}(559,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{134}{165}\right)\) | \(e\left(\frac{103}{165}\right)\) | \(e\left(\frac{16}{165}\right)\) | \(e\left(\frac{113}{165}\right)\) | \(e\left(\frac{24}{55}\right)\) | \(e\left(\frac{10}{11}\right)\) | \(e\left(\frac{4}{165}\right)\) | \(e\left(\frac{82}{165}\right)\) | \(e\left(\frac{41}{165}\right)\) | \(e\left(\frac{7}{55}\right)\) |
\(\chi_{3267}(577,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{151}{165}\right)\) | \(e\left(\frac{137}{165}\right)\) | \(e\left(\frac{119}{165}\right)\) | \(e\left(\frac{67}{165}\right)\) | \(e\left(\frac{41}{55}\right)\) | \(e\left(\frac{7}{11}\right)\) | \(e\left(\frac{71}{165}\right)\) | \(e\left(\frac{53}{165}\right)\) | \(e\left(\frac{109}{165}\right)\) | \(e\left(\frac{28}{55}\right)\) |
\(\chi_{3267}(586,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{152}{165}\right)\) | \(e\left(\frac{139}{165}\right)\) | \(e\left(\frac{28}{165}\right)\) | \(e\left(\frac{74}{165}\right)\) | \(e\left(\frac{42}{55}\right)\) | \(e\left(\frac{1}{11}\right)\) | \(e\left(\frac{7}{165}\right)\) | \(e\left(\frac{61}{165}\right)\) | \(e\left(\frac{113}{165}\right)\) | \(e\left(\frac{26}{55}\right)\) |
\(\chi_{3267}(631,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{43}{165}\right)\) | \(e\left(\frac{86}{165}\right)\) | \(e\left(\frac{47}{165}\right)\) | \(e\left(\frac{136}{165}\right)\) | \(e\left(\frac{43}{55}\right)\) | \(e\left(\frac{6}{11}\right)\) | \(e\left(\frac{53}{165}\right)\) | \(e\left(\frac{14}{165}\right)\) | \(e\left(\frac{7}{165}\right)\) | \(e\left(\frac{24}{55}\right)\) |
\(\chi_{3267}(658,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{49}{165}\right)\) | \(e\left(\frac{98}{165}\right)\) | \(e\left(\frac{161}{165}\right)\) | \(e\left(\frac{13}{165}\right)\) | \(e\left(\frac{49}{55}\right)\) | \(e\left(\frac{3}{11}\right)\) | \(e\left(\frac{164}{165}\right)\) | \(e\left(\frac{62}{165}\right)\) | \(e\left(\frac{31}{165}\right)\) | \(e\left(\frac{12}{55}\right)\) |
\(\chi_{3267}(685,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{7}{165}\right)\) | \(e\left(\frac{14}{165}\right)\) | \(e\left(\frac{23}{165}\right)\) | \(e\left(\frac{49}{165}\right)\) | \(e\left(\frac{7}{55}\right)\) | \(e\left(\frac{2}{11}\right)\) | \(e\left(\frac{47}{165}\right)\) | \(e\left(\frac{56}{165}\right)\) | \(e\left(\frac{28}{165}\right)\) | \(e\left(\frac{41}{55}\right)\) |
\(\chi_{3267}(775,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{131}{165}\right)\) | \(e\left(\frac{97}{165}\right)\) | \(e\left(\frac{124}{165}\right)\) | \(e\left(\frac{92}{165}\right)\) | \(e\left(\frac{21}{55}\right)\) | \(e\left(\frac{6}{11}\right)\) | \(e\left(\frac{31}{165}\right)\) | \(e\left(\frac{58}{165}\right)\) | \(e\left(\frac{29}{165}\right)\) | \(e\left(\frac{13}{55}\right)\) |
\(\chi_{3267}(829,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{128}{165}\right)\) | \(e\left(\frac{91}{165}\right)\) | \(e\left(\frac{67}{165}\right)\) | \(e\left(\frac{71}{165}\right)\) | \(e\left(\frac{18}{55}\right)\) | \(e\left(\frac{2}{11}\right)\) | \(e\left(\frac{58}{165}\right)\) | \(e\left(\frac{34}{165}\right)\) | \(e\left(\frac{17}{165}\right)\) | \(e\left(\frac{19}{55}\right)\) |
\(\chi_{3267}(883,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{47}{165}\right)\) | \(e\left(\frac{94}{165}\right)\) | \(e\left(\frac{13}{165}\right)\) | \(e\left(\frac{164}{165}\right)\) | \(e\left(\frac{47}{55}\right)\) | \(e\left(\frac{4}{11}\right)\) | \(e\left(\frac{127}{165}\right)\) | \(e\left(\frac{46}{165}\right)\) | \(e\left(\frac{23}{165}\right)\) | \(e\left(\frac{16}{55}\right)\) |
\(\chi_{3267}(955,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{124}{165}\right)\) | \(e\left(\frac{83}{165}\right)\) | \(e\left(\frac{101}{165}\right)\) | \(e\left(\frac{43}{165}\right)\) | \(e\left(\frac{14}{55}\right)\) | \(e\left(\frac{4}{11}\right)\) | \(e\left(\frac{149}{165}\right)\) | \(e\left(\frac{2}{165}\right)\) | \(e\left(\frac{1}{165}\right)\) | \(e\left(\frac{27}{55}\right)\) |
\(\chi_{3267}(982,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{67}{165}\right)\) | \(e\left(\frac{134}{165}\right)\) | \(e\left(\frac{8}{165}\right)\) | \(e\left(\frac{139}{165}\right)\) | \(e\left(\frac{12}{55}\right)\) | \(e\left(\frac{5}{11}\right)\) | \(e\left(\frac{2}{165}\right)\) | \(e\left(\frac{41}{165}\right)\) | \(e\left(\frac{103}{165}\right)\) | \(e\left(\frac{31}{55}\right)\) |
\(\chi_{3267}(1072,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{101}{165}\right)\) | \(e\left(\frac{37}{165}\right)\) | \(e\left(\frac{49}{165}\right)\) | \(e\left(\frac{47}{165}\right)\) | \(e\left(\frac{46}{55}\right)\) | \(e\left(\frac{10}{11}\right)\) | \(e\left(\frac{136}{165}\right)\) | \(e\left(\frac{148}{165}\right)\) | \(e\left(\frac{74}{165}\right)\) | \(e\left(\frac{18}{55}\right)\) |
\(\chi_{3267}(1126,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{8}{165}\right)\) | \(e\left(\frac{16}{165}\right)\) | \(e\left(\frac{97}{165}\right)\) | \(e\left(\frac{56}{165}\right)\) | \(e\left(\frac{8}{55}\right)\) | \(e\left(\frac{7}{11}\right)\) | \(e\left(\frac{148}{165}\right)\) | \(e\left(\frac{64}{165}\right)\) | \(e\left(\frac{32}{165}\right)\) | \(e\left(\frac{39}{55}\right)\) |
\(\chi_{3267}(1153,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{119}{165}\right)\) | \(e\left(\frac{73}{165}\right)\) | \(e\left(\frac{61}{165}\right)\) | \(e\left(\frac{8}{165}\right)\) | \(e\left(\frac{9}{55}\right)\) | \(e\left(\frac{1}{11}\right)\) | \(e\left(\frac{139}{165}\right)\) | \(e\left(\frac{127}{165}\right)\) | \(e\left(\frac{146}{165}\right)\) | \(e\left(\frac{37}{55}\right)\) |
\(\chi_{3267}(1171,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{91}{165}\right)\) | \(e\left(\frac{17}{165}\right)\) | \(e\left(\frac{134}{165}\right)\) | \(e\left(\frac{142}{165}\right)\) | \(e\left(\frac{36}{55}\right)\) | \(e\left(\frac{4}{11}\right)\) | \(e\left(\frac{116}{165}\right)\) | \(e\left(\frac{68}{165}\right)\) | \(e\left(\frac{34}{165}\right)\) | \(e\left(\frac{38}{55}\right)\) |
\(\chi_{3267}(1180,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{107}{165}\right)\) | \(e\left(\frac{49}{165}\right)\) | \(e\left(\frac{163}{165}\right)\) | \(e\left(\frac{89}{165}\right)\) | \(e\left(\frac{52}{55}\right)\) | \(e\left(\frac{7}{11}\right)\) | \(e\left(\frac{82}{165}\right)\) | \(e\left(\frac{31}{165}\right)\) | \(e\left(\frac{98}{165}\right)\) | \(e\left(\frac{6}{55}\right)\) |
\(\chi_{3267}(1225,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{133}{165}\right)\) | \(e\left(\frac{101}{165}\right)\) | \(e\left(\frac{107}{165}\right)\) | \(e\left(\frac{106}{165}\right)\) | \(e\left(\frac{23}{55}\right)\) | \(e\left(\frac{5}{11}\right)\) | \(e\left(\frac{68}{165}\right)\) | \(e\left(\frac{74}{165}\right)\) | \(e\left(\frac{37}{165}\right)\) | \(e\left(\frac{9}{55}\right)\) |
\(\chi_{3267}(1252,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{34}{165}\right)\) | \(e\left(\frac{68}{165}\right)\) | \(e\left(\frac{41}{165}\right)\) | \(e\left(\frac{73}{165}\right)\) | \(e\left(\frac{34}{55}\right)\) | \(e\left(\frac{5}{11}\right)\) | \(e\left(\frac{134}{165}\right)\) | \(e\left(\frac{107}{165}\right)\) | \(e\left(\frac{136}{165}\right)\) | \(e\left(\frac{42}{55}\right)\) |