Properties

Label 3276.1949
Modulus 32763276
Conductor 819819
Order 66
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3276, base_ring=CyclotomicField(6))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,5,1,3]))
 
pari: [g,chi] = znchar(Mod(1949,3276))
 

Basic properties

Modulus: 32763276
Conductor: 819819
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 66
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ819(311,)\chi_{819}(311,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 3276.co

χ3276(1949,)\chi_{3276}(1949,\cdot) χ3276(3197,)\chi_{3276}(3197,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ3)\mathbb{Q}(\zeta_3)
Fixed field: 6.6.726794361657.2

Values on generators

(1639,2549,2341,2017)(1639,2549,2341,2017)(1,e(56),e(16),1)(1,e\left(\frac{5}{6}\right),e\left(\frac{1}{6}\right),-1)

First values

aa 1-11155111117171919232325252929313137374141
χ3276(1949,a) \chi_{ 3276 }(1949, a) 11111-111e(23)e\left(\frac{2}{3}\right)e(13)e\left(\frac{1}{3}\right)1-111e(56)e\left(\frac{5}{6}\right)e(13)e\left(\frac{1}{3}\right)e(56)e\left(\frac{5}{6}\right)e(16)e\left(\frac{1}{6}\right)
sage: chi.jacobi_sum(n)
 
χ3276(1949,a)   \chi_{ 3276 }(1949,a) \; at   a=\;a = e.g. 2