Properties

Label 3276.2281
Modulus 32763276
Conductor 819819
Order 1212
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3276, base_ring=CyclotomicField(12))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,4,6,5]))
 
pari: [g,chi] = znchar(Mod(2281,3276))
 

Basic properties

Modulus: 32763276
Conductor: 819819
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 1212
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ819(643,)\chi_{819}(643,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 3276.kr

χ3276(349,)\chi_{3276}(349,\cdot) χ3276(1021,)\chi_{3276}(1021,\cdot) χ3276(1861,)\chi_{3276}(1861,\cdot) χ3276(2281,)\chi_{3276}(2281,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ12)\Q(\zeta_{12})
Fixed field: 12.12.9076223692791829074146373.1

Values on generators

(1639,2549,2341,2017)(1639,2549,2341,2017)(1,e(13),1,e(512))(1,e\left(\frac{1}{3}\right),-1,e\left(\frac{5}{12}\right))

First values

aa 1-11155111117171919232325252929313137374141
χ3276(2281,a) \chi_{ 3276 }(2281, a) 1111e(1112)e\left(\frac{11}{12}\right)iie(13)e\left(\frac{1}{3}\right)e(712)e\left(\frac{7}{12}\right)e(56)e\left(\frac{5}{6}\right)e(56)e\left(\frac{5}{6}\right)11e(1112)e\left(\frac{11}{12}\right)e(1112)e\left(\frac{11}{12}\right)e(712)e\left(\frac{7}{12}\right)
sage: chi.jacobi_sum(n)
 
χ3276(2281,a)   \chi_{ 3276 }(2281,a) \; at   a=\;a = e.g. 2