Properties

Label 3276.551
Modulus 32763276
Conductor 32763276
Order 1212
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3276, base_ring=CyclotomicField(12))
 
M = H._module
 
chi = DirichletCharacter(H, M([6,2,10,9]))
 
pari: [g,chi] = znchar(Mod(551,3276))
 

Basic properties

Modulus: 32763276
Conductor: 32763276
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 1212
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 3276.kz

χ3276(47,)\chi_{3276}(47,\cdot) χ3276(551,)\chi_{3276}(551,\cdot) χ3276(2075,)\chi_{3276}(2075,\cdot) χ3276(2579,)\chi_{3276}(2579,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ12)\Q(\zeta_{12})
Fixed field: 12.12.4753495682939634596221218213888.1

Values on generators

(1639,2549,2341,2017)(1639,2549,2341,2017)(1,e(16),e(56),i)(-1,e\left(\frac{1}{6}\right),e\left(\frac{5}{6}\right),-i)

First values

aa 1-11155111117171919232325252929313137374141
χ3276(551,a) \chi_{ 3276 }(551, a) 1111i-iiie(56)e\left(\frac{5}{6}\right)e(512)e\left(\frac{5}{12}\right)1-11-1e(16)e\left(\frac{1}{6}\right)e(512)e\left(\frac{5}{12}\right)e(1112)e\left(\frac{11}{12}\right)e(112)e\left(\frac{1}{12}\right)
sage: chi.jacobi_sum(n)
 
χ3276(551,a)   \chi_{ 3276 }(551,a) \; at   a=\;a = e.g. 2