sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3328, base_ring=CyclotomicField(64))
M = H._module
chi = DirichletCharacter(H, M([32,57,16]))
pari:[g,chi] = znchar(Mod(2907,3328))
Modulus: | 3328 | |
Conductor: | 3328 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 64 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ3328(83,⋅)
χ3328(203,⋅)
χ3328(291,⋅)
χ3328(411,⋅)
χ3328(499,⋅)
χ3328(619,⋅)
χ3328(707,⋅)
χ3328(827,⋅)
χ3328(915,⋅)
χ3328(1035,⋅)
χ3328(1123,⋅)
χ3328(1243,⋅)
χ3328(1331,⋅)
χ3328(1451,⋅)
χ3328(1539,⋅)
χ3328(1659,⋅)
χ3328(1747,⋅)
χ3328(1867,⋅)
χ3328(1955,⋅)
χ3328(2075,⋅)
χ3328(2163,⋅)
χ3328(2283,⋅)
χ3328(2371,⋅)
χ3328(2491,⋅)
χ3328(2579,⋅)
χ3328(2699,⋅)
χ3328(2787,⋅)
χ3328(2907,⋅)
χ3328(2995,⋅)
χ3328(3115,⋅)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(1535,261,769) → (−1,e(6457),i)
a |
−1 | 1 | 3 | 5 | 7 | 9 | 11 | 15 | 17 | 19 | 21 | 23 |
χ3328(2907,a) |
1 | 1 | e(6443) | e(649) | e(325) | e(3211) | e(6461) | e(1613) | e(167) | e(6415) | e(6453) | e(3215) |
sage:chi.jacobi_sum(n)