from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3330, base_ring=CyclotomicField(36))
M = H._module
chi = DirichletCharacter(H, M([30,27,10]))
pari: [g,chi] = znchar(Mod(1283,3330))
Basic properties
Modulus: | \(3330\) | |
Conductor: | \(1665\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(36\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from \(\chi_{1665}(1283,\cdot)\) | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 3330.fv
\(\chi_{3330}(263,\cdot)\) \(\chi_{3330}(617,\cdot)\) \(\chi_{3330}(1283,\cdot)\) \(\chi_{3330}(1427,\cdot)\) \(\chi_{3330}(2093,\cdot)\) \(\chi_{3330}(2297,\cdot)\) \(\chi_{3330}(2507,\cdot)\) \(\chi_{3330}(2657,\cdot)\) \(\chi_{3330}(2927,\cdot)\) \(\chi_{3330}(2963,\cdot)\) \(\chi_{3330}(3173,\cdot)\) \(\chi_{3330}(3323,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{36})\) |
Fixed field: | Number field defined by a degree 36 polynomial |
Values on generators
\((371,667,631)\) → \((e\left(\frac{5}{6}\right),-i,e\left(\frac{5}{18}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(41\) | \(43\) |
\( \chi_{ 3330 }(1283, a) \) | \(1\) | \(1\) | \(e\left(\frac{35}{36}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{35}{36}\right)\) | \(e\left(\frac{7}{36}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{1}{12}\right)\) |
sage: chi.jacobi_sum(n)