Properties

Label 3330.457
Modulus $3330$
Conductor $1665$
Order $36$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3330, base_ring=CyclotomicField(36))
 
M = H._module
 
chi = DirichletCharacter(H, M([24,9,11]))
 
pari: [g,chi] = znchar(Mod(457,3330))
 

Basic properties

Modulus: \(3330\)
Conductor: \(1665\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(36\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{1665}(457,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 3330.fm

\(\chi_{3330}(457,\cdot)\) \(\chi_{3330}(907,\cdot)\) \(\chi_{3330}(943,\cdot)\) \(\chi_{3330}(1093,\cdot)\) \(\chi_{3330}(1273,\cdot)\) \(\chi_{3330}(1393,\cdot)\) \(\chi_{3330}(1687,\cdot)\) \(\chi_{3330}(1867,\cdot)\) \(\chi_{3330}(2077,\cdot)\) \(\chi_{3330}(3073,\cdot)\) \(\chi_{3330}(3103,\cdot)\) \(\chi_{3330}(3217,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{36})\)
Fixed field: Number field defined by a degree 36 polynomial

Values on generators

\((371,667,631)\) → \((e\left(\frac{2}{3}\right),i,e\left(\frac{11}{36}\right))\)

First values

\(a\) \(-1\)\(1\)\(7\)\(11\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(41\)\(43\)
\( \chi_{ 3330 }(457, a) \) \(1\)\(1\)\(e\left(\frac{25}{36}\right)\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{4}{9}\right)\)\(e\left(\frac{7}{18}\right)\)\(e\left(\frac{7}{36}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{7}{12}\right)\)\(e\left(\frac{1}{12}\right)\)\(e\left(\frac{17}{18}\right)\)\(e\left(\frac{2}{3}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 3330 }(457,a) \;\) at \(\;a = \) e.g. 2