Properties

Label 3332.407
Modulus 33323332
Conductor 33323332
Order 1414
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3332, base_ring=CyclotomicField(14))
 
M = H._module
 
chi = DirichletCharacter(H, M([7,10,7]))
 
pari: [g,chi] = znchar(Mod(407,3332))
 

Basic properties

Modulus: 33323332
Conductor: 33323332
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 1414
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 3332.be

χ3332(407,)\chi_{3332}(407,\cdot) χ3332(1359,)\chi_{3332}(1359,\cdot) χ3332(1835,)\chi_{3332}(1835,\cdot) χ3332(2311,)\chi_{3332}(2311,\cdot) χ3332(2787,)\chi_{3332}(2787,\cdot) χ3332(3263,)\chi_{3332}(3263,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ7)\Q(\zeta_{7})
Fixed field: Number field defined by a degree 14 polynomial

Values on generators

(1667,885,785)(1667,885,785)(1,e(57),1)(-1,e\left(\frac{5}{7}\right),-1)

First values

aa 1-1113355991111131315151919232325252727
χ3332(407,a) \chi_{ 3332 }(407, a) 1-111e(57)e\left(\frac{5}{7}\right)e(314)e\left(\frac{3}{14}\right)e(37)e\left(\frac{3}{7}\right)e(47)e\left(\frac{4}{7}\right)e(47)e\left(\frac{4}{7}\right)e(1314)e\left(\frac{13}{14}\right)1-1e(17)e\left(\frac{1}{7}\right)e(37)e\left(\frac{3}{7}\right)e(17)e\left(\frac{1}{7}\right)
sage: chi.jacobi_sum(n)
 
χ3332(407,a)   \chi_{ 3332 }(407,a) \; at   a=\;a = e.g. 2