Properties

Label 3332.67
Modulus 33323332
Conductor 476476
Order 66
Real no
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3332, base_ring=CyclotomicField(6))
 
M = H._module
 
chi = DirichletCharacter(H, M([3,4,3]))
 
pari: [g,chi] = znchar(Mod(67,3332))
 

Basic properties

Modulus: 33323332
Conductor: 476476
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 66
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ476(67,)\chi_{476}(67,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 3332.o

χ3332(67,)\chi_{3332}(67,\cdot) χ3332(2039,)\chi_{3332}(2039,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ3)\mathbb{Q}(\zeta_3)
Fixed field: 6.0.754951232.2

Values on generators

(1667,885,785)(1667,885,785)(1,e(23),1)(-1,e\left(\frac{2}{3}\right),-1)

First values

aa 1-1113355991111131315151919232325252727
χ3332(67,a) \chi_{ 3332 }(67, a) 1-111e(23)e\left(\frac{2}{3}\right)e(56)e\left(\frac{5}{6}\right)e(13)e\left(\frac{1}{3}\right)e(23)e\left(\frac{2}{3}\right)111-1e(56)e\left(\frac{5}{6}\right)e(13)e\left(\frac{1}{3}\right)e(23)e\left(\frac{2}{3}\right)11
sage: chi.jacobi_sum(n)
 
χ3332(67,a)   \chi_{ 3332 }(67,a) \; at   a=\;a = e.g. 2