Properties

Label 3360.1811
Modulus $3360$
Conductor $672$
Order $24$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3360, base_ring=CyclotomicField(24))
 
M = H._module
 
chi = DirichletCharacter(H, M([12,21,12,0,20]))
 
pari: [g,chi] = znchar(Mod(1811,3360))
 

Basic properties

Modulus: \(3360\)
Conductor: \(672\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(24\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{672}(467,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 3360.ii

\(\chi_{3360}(131,\cdot)\) \(\chi_{3360}(731,\cdot)\) \(\chi_{3360}(971,\cdot)\) \(\chi_{3360}(1571,\cdot)\) \(\chi_{3360}(1811,\cdot)\) \(\chi_{3360}(2411,\cdot)\) \(\chi_{3360}(2651,\cdot)\) \(\chi_{3360}(3251,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{24})\)
Fixed field: 24.0.419957608266393538093113781921531638278568932278272.1

Values on generators

\((1471,421,1121,2017,1921)\) → \((-1,e\left(\frac{7}{8}\right),-1,1,e\left(\frac{5}{6}\right))\)

First values

\(a\) \(-1\)\(1\)\(11\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 3360 }(1811, a) \) \(-1\)\(1\)\(e\left(\frac{17}{24}\right)\)\(e\left(\frac{5}{8}\right)\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{19}{24}\right)\)\(e\left(\frac{11}{12}\right)\)\(e\left(\frac{1}{8}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{13}{24}\right)\)\(i\)\(e\left(\frac{7}{8}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 3360 }(1811,a) \;\) at \(\;a = \) e.g. 2