Properties

Label 3360.2017
Modulus $3360$
Conductor $5$
Order $4$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3360, base_ring=CyclotomicField(4))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,0,0,1,0]))
 
pari: [g,chi] = znchar(Mod(2017,3360))
 

Basic properties

Modulus: \(3360\)
Conductor: \(5\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(4\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{5}(2,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 3360.cw

\(\chi_{3360}(673,\cdot)\) \(\chi_{3360}(2017,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\mathbb{Q}(i)\)
Fixed field: \(\Q(\zeta_{5})\)

Values on generators

\((1471,421,1121,2017,1921)\) → \((1,1,1,i,1)\)

First values

\(a\) \(-1\)\(1\)\(11\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 3360 }(2017, a) \) \(-1\)\(1\)\(1\)\(-i\)\(i\)\(-1\)\(-i\)\(-1\)\(1\)\(i\)\(1\)\(-i\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 3360 }(2017,a) \;\) at \(\;a = \) e.g. 2