sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3360, base_ring=CyclotomicField(8))
M = H._module
chi = DirichletCharacter(H, M([4,7,4,6,4]))
pari:[g,chi] = znchar(Mod(83,3360))
Modulus: | 3360 | |
Conductor: | 3360 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 8 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ3360(83,⋅)
χ3360(587,⋅)
χ3360(1763,⋅)
χ3360(2267,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(1471,421,1121,2017,1921) → (−1,e(87),−1,−i,−1)
a |
−1 | 1 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 |
χ3360(83,a) |
1 | 1 | e(83) | e(87) | i | e(85) | −1 | e(85) | 1 | e(85) | i | e(81) |
sage:chi.jacobi_sum(n)