Properties

Label 3380.2009
Modulus $3380$
Conductor $65$
Order $12$
Real no
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3380, base_ring=CyclotomicField(12))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,6,11]))
 
pari: [g,chi] = znchar(Mod(2009,3380))
 

Basic properties

Modulus: \(3380\)
Conductor: \(65\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(12\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{65}(59,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 3380.bm

\(\chi_{3380}(89,\cdot)\) \(\chi_{3380}(249,\cdot)\) \(\chi_{3380}(1709,\cdot)\) \(\chi_{3380}(2009,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{12})\)
Fixed field: 12.0.28002506156828125.1

Values on generators

\((1691,677,1861)\) → \((1,-1,e\left(\frac{11}{12}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(11\)\(17\)\(19\)\(21\)\(23\)\(27\)\(29\)
\( \chi_{ 3380 }(2009, a) \) \(-1\)\(1\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{7}{12}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{5}{12}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{7}{12}\right)\)\(-i\)\(e\left(\frac{2}{3}\right)\)\(-1\)\(e\left(\frac{2}{3}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 3380 }(2009,a) \;\) at \(\;a = \) e.g. 2