Properties

Label 3380.2127
Modulus 33803380
Conductor 260260
Order 44
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3380, base_ring=CyclotomicField(4))
 
M = H._module
 
chi = DirichletCharacter(H, M([2,1,1]))
 
pari: [g,chi] = znchar(Mod(2127,3380))
 

Basic properties

Modulus: 33803380
Conductor: 260260
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 44
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ260(47,)\chi_{260}(47,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 3380.l

χ3380(2127,)\chi_{3380}(2127,\cdot) χ3380(2943,)\chi_{3380}(2943,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(i)\mathbb{Q}(i)
Fixed field: 4.0.4394000.1

Values on generators

(1691,677,1861)(1691,677,1861)(1,i,i)(-1,i,i)

First values

aa 1-1113377991111171719192121232327272929
χ3380(2127,a) \chi_{ 3380 }(2127, a) 1-111ii1-11-1iii-iiii-ii-ii-i1-1
sage: chi.jacobi_sum(n)
 
χ3380(2127,a)   \chi_{ 3380 }(2127,a) \; at   a=\;a = e.g. 2