sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(345, base_ring=CyclotomicField(22))
M = H._module
chi = DirichletCharacter(H, M([11,11,21]))
pari:[g,chi] = znchar(Mod(14,345))
Modulus: | 345 | |
Conductor: | 345 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 22 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ345(14,⋅)
χ345(44,⋅)
χ345(74,⋅)
χ345(89,⋅)
χ345(134,⋅)
χ345(149,⋅)
χ345(194,⋅)
χ345(224,⋅)
χ345(314,⋅)
χ345(329,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(116,277,166) → (−1,−1,e(2221))
a |
−1 | 1 | 2 | 4 | 7 | 8 | 11 | 13 | 14 | 16 | 17 | 19 |
χ345(14,a) |
1 | 1 | e(1110) | e(119) | e(117) | e(118) | e(111) | e(2219) | e(116) | e(117) | e(2215) | e(227) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)