Properties

Label 345.244
Modulus 345345
Conductor 115115
Order 2222
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(345, base_ring=CyclotomicField(22))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,11,21]))
 
pari: [g,chi] = znchar(Mod(244,345))
 

Basic properties

Modulus: 345345
Conductor: 115115
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 2222
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ115(14,)\chi_{115}(14,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 345.r

χ345(19,)\chi_{345}(19,\cdot) χ345(34,)\chi_{345}(34,\cdot) χ345(79,)\chi_{345}(79,\cdot) χ345(109,)\chi_{345}(109,\cdot) χ345(199,)\chi_{345}(199,\cdot) χ345(214,)\chi_{345}(214,\cdot) χ345(244,)\chi_{345}(244,\cdot) χ345(274,)\chi_{345}(274,\cdot) χ345(304,)\chi_{345}(304,\cdot) χ345(319,)\chi_{345}(319,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ11)\Q(\zeta_{11})
Fixed field: 22.0.1927323443393334271838358868310546875.1

Values on generators

(116,277,166)(116,277,166)(1,1,e(2122))(1,-1,e\left(\frac{21}{22}\right))

First values

aa 1-11122447788111113131414161617171919
χ345(244,a) \chi_{ 345 }(244, a) 1-111e(922)e\left(\frac{9}{22}\right)e(911)e\left(\frac{9}{11}\right)e(711)e\left(\frac{7}{11}\right)e(522)e\left(\frac{5}{22}\right)e(1322)e\left(\frac{13}{22}\right)e(1922)e\left(\frac{19}{22}\right)e(122)e\left(\frac{1}{22}\right)e(711)e\left(\frac{7}{11}\right)e(211)e\left(\frac{2}{11}\right)e(722)e\left(\frac{7}{22}\right)
sage: chi.jacobi_sum(n)
 
χ345(244,a)   \chi_{ 345 }(244,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ345(244,))   \tau_{ a }( \chi_{ 345 }(244,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ345(244,),χ345(n,))   J(\chi_{ 345 }(244,·),\chi_{ 345 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ345(244,))  K(a,b,\chi_{ 345 }(244,·)) \; at   a,b=\; a,b = e.g. 1,2