Properties

Label 345.311
Modulus $345$
Conductor $69$
Order $22$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(345, base_ring=CyclotomicField(22))
 
M = H._module
 
chi = DirichletCharacter(H, M([11,0,20]))
 
pari: [g,chi] = znchar(Mod(311,345))
 

Basic properties

Modulus: \(345\)
Conductor: \(69\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(22\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{69}(35,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 345.q

\(\chi_{345}(26,\cdot)\) \(\chi_{345}(41,\cdot)\) \(\chi_{345}(71,\cdot)\) \(\chi_{345}(101,\cdot)\) \(\chi_{345}(131,\cdot)\) \(\chi_{345}(146,\cdot)\) \(\chi_{345}(236,\cdot)\) \(\chi_{345}(266,\cdot)\) \(\chi_{345}(311,\cdot)\) \(\chi_{345}(326,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{11})\)
Fixed field: 22.0.304011857053427966889939263171547.1

Values on generators

\((116,277,166)\) → \((-1,1,e\left(\frac{10}{11}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(7\)\(8\)\(11\)\(13\)\(14\)\(16\)\(17\)\(19\)
\( \chi_{ 345 }(311, a) \) \(-1\)\(1\)\(e\left(\frac{7}{22}\right)\)\(e\left(\frac{7}{11}\right)\)\(e\left(\frac{3}{11}\right)\)\(e\left(\frac{21}{22}\right)\)\(e\left(\frac{15}{22}\right)\)\(e\left(\frac{8}{11}\right)\)\(e\left(\frac{13}{22}\right)\)\(e\left(\frac{3}{11}\right)\)\(e\left(\frac{19}{22}\right)\)\(e\left(\frac{7}{11}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 345 }(311,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 345 }(311,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 345 }(311,·),\chi_{ 345 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 345 }(311,·)) \;\) at \(\; a,b = \) e.g. 1,2